
Digital Logic
Design

Hajar Falahati

Department of Computer Engineering
IRAN University of Science and Technology

hfalahati@iust.ac.ir

mailto:hfalahati@ipm.ir

Switching Functions
• Switching algebra

◦ Boolean algebra with the set of elements K = {0, 1}
◦ If there are n variables, we can define switching functions.

•A switching expression as follows:
◦ f0(A,B)= 0, f6(A,B) = AB' + A'B, f11(A,B) = AB + A'B + A'B' = A' + B, ...

22
n

AB f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
00 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
01 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
10 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Digital Logic Design: Switching Functions 2

Some Definition: 1
•Literal

◦ A variable, complemented or uncomplemented
◦ ! , ! , B , "

•Product term
◦ A literal or literals ANDed together
◦ (! $ " $ %) , (! $ %) , (" $ %)

•Sum term
◦ A literal or literals ORed together.
◦ (! + " + %) , (! + %) , (" + %)

• Minterm
◦ A product that includes all the variables
◦ (! $ " $ %) , (! $ " $ %) , (! $ " $ %)

• Maxterm
◦ A sum that includes all the variables
◦ (! + " + %) , (! + " + %) , (! + " + %)

Digital Logic Design: Boolean Algebra 3

Algebraic Forms
•SOP

◦ Sum of Products
◦ ORing product terms
◦ f(A, B, C) = ABC + A'C + B’C

•POS
◦ Product of Sums
◦ ANDing sum terms
◦ f (A, B, C) = (A' + B' + C')(A + C')(B + C’)

•Canonical SOP
◦ Represented as a sum of minterms only.
◦ Example: f1(A,B,C) = A'BC' + ABC' + A'BC + ABC

•Canonical POS
◦ Represented as a product of maxterms only.
◦ Example: f2(A,B,C) = (A+B+C)(A+B+C')(A'+B+C)(A'+B+C')
◦

Digital Logic Design: Switching Functions 4

Outline
• Logic Gates

Digital Logic Design: Logic Gates 5

Transistors

Transistor
• Computers are built from very large numbers of very simple structures

◦ Intel’s Pentium IV microprocessor, first offered for sale in 2000, was made up of
more than 42 million MOS transistors

◦ Intel’s Core i7 Broadwell-E, offered for sale in 2016, is made up of more than 3.2
billion MOS transistors

Digital Logic Design: Logic Gates 7

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Transistor Structure
• Structure of a typical transistor

• A transistor conducts when the channel is filled with carriers
◦ Negative carriers (free electrons)
◦ Positive carriers (holes electrons)

•Why is this useful?
◦ We can combine many of these to realize simple logic gates

channel

DrainSource
Gate SiO2

Body

Digital Logic Design: Logic Gates 8

BJT Transistor
• Bipolar Junction Transistor (BJT)

Digital Logic Design: Logic Gates 9

MOS Transistor
•Field Effect Transistors (FET)

◦ PMOS: if Gain =0 à electron flow from drain to source
◦ NMOS: if Gain =1 à electron flow from drain to source

PMOS Transistor

NMOS Transistor

Drain

Source

Gain

Drain

Source

Gain

Digital Logic Design: Logic Gates 10

Gate
Source Drain

Power Supply

Wall Switch

Power Supply

Wall Switch

How Does a Transistor Work?
• In order for the lamp to glow, electrons must flow

• In order for electrons to flow, there must be a closed circuit from the
power supply to the lamp and back to the power supply

• The lamp can be turned on and off by simply manipulating the wall
switch to make or break the closed circuit

11

Switches
• A switch has two states

◦ Closed/ On
◦ Open/ OFF

Digital Logic Design: Logic Gates 12

Switches Samples

Digital Logic Design: Logic Gates 13

Switches: Sample 1
• Find L(A,B,C,D) B

A

D

C

A

D

C

Digital Logic Design: Logic Gates 14

Switches: Sample1 (cont’d)
• Find L(A,B,C,D)

◦ A (B ̅" + D)
◦ A B ̅" + A D

◦ A (B + D) ̅"

B
A

D

C

A

D

C
B

Digital Logic Design: Logic Gates 15

• Instead of the wall switch, we could use an n-type or a p-type MOS
transistor to make or break the closed circuit

Switching and Transistors

Drain

Source

Gate

Schematic of an n-type
MOS transistor

If the gate of an n-type transistor is supplied
with a high voltage, the connection from
source to drain acts like a piece of wire

Depending on the technology, 0.3V to 3V

If the gate of the -type transistor is supplied
with 0V, the connection between the source
and drain is broken

Digital Logic Design: Logic Gates 16

Power Supply

3 Volt

How Does a Transistor Work?
• The n-type transistor in a circuit with a battery and a bulb

Power Supply

0 Volt

Shorthand notation

Gate

Digital Logic Design: Logic Gates 17

Drain

Source

Gate

How Does a Transistor Work?
• The p-type transistor works in exactly the opposite fashion from the n-type
transistor

The circuit is closed
when the gate is
supplied with 3V

The circuit is closed
when the gate is
supplied with 0V

Drain

Source

Gate

n-type p-type

Digital Logic Design: Logic Gates 18

Logic gates

One Level Higher in
Abstraction
• How do we build logic out of MOS transistors?

• We construct basic logic structures out of individual MOS transistors

• These logical units are named logic gates
◦ They implement simple Boolean functions

Digital Logic Design: Logic Gates 20

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Making Logic Blocks Using CMOS Technology
•Modern computers use both n-type and p-type transistors, i.e.
Complementary MOS (CMOS) technology

•The simplest logic structure that exists in a modern computer

nMOS + pMOS = CMOS

3V

0V

Out (Y)In (A)

n-type

p-type

What does this circuit do?

Digital Logic Design: Logic Gates 21

Functionality of Our CMOS
Circuit

What happens when the input is connected to 0V?

3V

0V

Out (Y)0V

3V

0V

Y = 3V

p-type transistor pulls
the output up

Digital Logic Design: Logic Gates 22

3V

0V

Y = 0V

Functionality of Our CMOS
Circuit

What happens when the input is connected to 3V?

n-type transistor pulls
the output down

3V

0V

Out (Y)A= 3V

Digital Logic Design: Logic Gates 23

A P N Y
0

1

A P N Y
0 ON OFF 1

1

CMOS NOT Gate
• This is actually the CMOS NOT Gate

•Why do we call it NOT?
◦ If A = 0V then Y = 3V
◦ If A = 3V then Y = 0V

• Digital circuit: one possible interpretation
◦ Interpret 0V as logical (binary) 0 value
◦ Interpret 3V as logical (binary) 1 value

3V

0V

Out (Y)In (A)
P

N

! = $̅
A P N Y
0 ON OFF 1

1 OFF ON 0

Digital Logic Design: Logic Gates 24

CMOS NOT Gate
•We call it a NOT gate 3V

0V

Out (Y)In (A)
P

N
A Y NOT

Y = A

A Y
0 1
1 0

A Y

! = $̅

• Truth Table
◦ What would be the logical output of the circuit for each possible input

Digital Logic Design: Logic Gates 25

Logic Gates: NOT
• (a) NOT logic function.

• (b) Electronic NOT gate.

• (c) Standard symbol.

• (d) IEEE block symbol.

A Y

YA

L
H

H
L

(b)

(c)

(d)

YA 1

a
0
1

1
0

(a)

fNOT (a) = a

Digital Logic Design: Logic Gates 26

Another CMOS Gate: What Is
This?
• Let’s build more complex gates!

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

Digital Logic Design: Logic Gates 27

CMOS NAND Gate
• Let’s build more complex gates!

A B P1 P2 N1 N2 Y
0 0
0 1
1 0
1 1

! = # $ % = #%3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

Digital Logic Design: Logic Gates 28

CMOS NAND Gate

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1
1 0
1 1

! = # $ % = #%• Let’s build more complex gates!
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

Digital Logic Design: Logic Gates 29

CMOS NAND Gate

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

! = # $ % = #%• Let’s build more complex gates!
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0
1 1

Digital Logic Design: Logic Gates 30

CMOS NAND Gate

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

! = # $ % = #%• Let’s build more complex gates!
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1

• N1 and N2 are connected in series; both must be ON to pull the output to 0V

Digital Logic Design: Logic Gates 31

CMOS NAND Gate

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

! = # $ % = #%• Let’s build more complex gates!
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1 OFF OFF ON ON 0

• N1 and N2 are connected in series; both must be ON to pull the output to 0V

Digital Logic Design: Logic Gates 32

CMOS NAND Gate

! = # $ % = #%

NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

A
YB

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

• Let’s build more complex gates!

Digital Logic Design: Logic Gates 33

Logic Gates: NAND
•(a) NAND logic function

•(b) Electronic NAND gate

•(c) Standard symbol

•(d) IEEE block symbol

A B Y

YB
A

L
L
H
H

L
H
L
H

H
H
H
L

(b)

(c)

YB
A

(d)

YB
A

(e)

&

fNAND (a, b) = aba b
0
0
1
1

0
1
0
1

1
1
1
0

(a)

!" = $! + $"

Digital Logic Design: Logic Gates 34

Logic Gates: NAND: Properties

a
b

a·b

a · b= a+b a
b

a+ba

b

a

b

a !"a
a

!"

Digital Logic Design: Logic Gates 36

),(),(

),(),(

)(),(

bafbababaf

bafbababaf

afaaaaaf

ORNAND

ANDNAND

NOTNAND

=+=×=

=×=×=

==×=

),(),(

),(),(

)(),(

bafbababaf

bafbababaf

afaaaaaf

ORNAND

ANDNAND

NOTNAND

=+=×=

=×=×=

==×=

),(),(

),(),(

)(),(

bafbababaf

bafbababaf

afaaaaaf

ORNAND

ANDNAND

NOTNAND

=+=×=

=×=×=

==×=

a
b

a·b a·b

• NAND gate may be used to implement all three elementary operators.

NAND: Universal Gate
•Universal gate

◦ A gate type that can implement any Boolean function.
◦ NAND is a universal gate

a
b

ab f(a, a) = a a = af(a, b) = ab = ab

AND gate NOT gate

f(a, b) = a + b = a + b

b

aa

b

OR gate

a

Digital Logic Design: Logic Gates 37

Logic Gates: NAND (cont’d)
• NAND operation is NOT associative

• (X NAND Y) NAND Z ≠ X NAND (Y NAND Z)

X
Y
Z

ZYX)Z,Y,X(F ××=

X
Y
Z

ZYX)Z,Y,X(F ++=

Digital Logic Design: Logic Gates 38

CMOS AND Gate

39

• How can we make a AND gate?
• Let’s check NAND gate

A B Y
0 0 0
0 1 0
1 0 0

111

A
YB

! = # $ % = #% ! = # $ % = #%

NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

A
YB

CMOS AND Gate

40

• How can we make a AND gate?

A B Y
0 0 0
0 1 0
1 0 0

111

A
YB

! = # $ % = #%

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

We make an AND gate using
one NAND gate and

one NOT gate

Logic Gates: AND
• (a) AND logic function.

• (b) Electronic AND gate.

• (c) Standard symbol.

• (d) IEEE block symbol.

A B Y YB
A

L
L
H
H

L
H
L
H

L
L
L
H

(b)

(c)

(d)

YB
A &

fAND (a, b) = aba b
0
0
1
1

0
1
0
1

0
0
0
1

(a)

Digital Logic Design: Logic Gates 41

Logic Gates: OR
• (a) OR logic function.

• (b) Electronic OR gate.

• (c) Standard symbol.

• (d) IEEE block symbol.

A B Y Y
B
A

L
L
H
H

L
H
L
H

L
H
H
H

(b)

(c)

(d)

Y
B
A ³1

(a, b) = a + ba b
0
0
1
1

0
1
0
1

0
1
1
1

(a)

fOR

Digital Logic Design: Logic Gates 42

Logic Gates: NOR
•(a) NAND logic function

•(b) Electronic NAND gate

•(c) Standard symbol

•(d) IEEE block symbol

A B Y
L
L
H
H

L
H
L
H

H
L
L
L

(b)

(c) (d)

Y
B
A

(e)

¹1

fNOR (a, b) = a + ba b
0
0
1
1

0
1
0
1

1
0
0
0

(a)

YB
A

YB
A

! + # = %!. %#

Digital Logic Design: Logic Gates 43

Logic Gates: NOR: Properties

),(),(

),(),(

)(),(

bafbababaf

bafbababaf

afaaaaaf

ANDNOR

ORNOR

NOTNOR

=×=+=

=+=+=

==+=

Digital Logic Design: Logic Gates 45

• NOR gate may be used to implement all three elementary operators
•NOR is universal gate

a
b

OR gate NOT gate

b

aa

b

AND gate

a f(a, a) = a + a = af(a, b) = a + b
a + b

f(a, b) = ab = ab

a
b

OR gate NOT gate

b

aa

b

AND gate

a f(a, a) = a + a = af(a, b) = a + b
a + b

f(a, b) = ab = ab

a
b

OR gate NOT gate

b

aa

b

AND gate

a f(a, a) = a + a = af(a, b) = a + b
a + b

f(a, b) = ab = ab

Logic Gates: NOR (cont’d)
• NOR operation is NOT associative
• (X NOR Y) NOR Z ≠ X NOr (Y NOR Z)

X
Y
Z

ZYX)Z,Y,X(F ++=

X
Y
Z

ZYX)Z,Y,X(F ..=

Digital Logic Design: Logic Gates 46

Logic Gates
A

YB
A

YBA Y

3V

0V

Out (Y)In (A)
P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A Y
0 1
1 0

A B Y
0 0 1
0 1 1
1 0 1

1 1 0

A B Y
0 0 0
0 1 0
1 0 0

1 1 1

Logic Gates (cont’d)
A

YB
A

YB
A

YB
A

YB
A B Y
0 0 1
0 1 0
1 0 0

1 1 0

A B Y
0 0 0
0 1 1
1 0 1

1 1 1

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

P1
P2

N1 N2

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

P1
P2

N1 N2

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

Logic Gates: Sample 3
• ³ 1 in IEEE symbol

ab sum(a, b) sum(a, b) ³ 1 fOR(a, b) = a + b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 True 1

Digital Logic Design: Logic Gates 49

Logic Gates: Sample 1
• Implement a device which takes two inputs and indicates whether their
sum is greater than 1 or not?

Digital Logic Design: Logic Gates 50

ab sum(a, b) sum(a, b) ³ 1 fOR(a, b) = a + b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 True 1

Logic Gates: Sample 1

ab sum(a, b) sum(a, b) ³ 1 fOR(a, b) = a + b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 True 1

Digital Logic Design: Logic Gates 51

• Implement a device which takes two inputs and indicates whether their
sum is greater than 1 or not?

Logic Gates: XOR
• Exclusive-OR (XOR)

•(a) XOR logic function

•(b) Electronic XOR gate

•(c) Standard symbol

•(d) IEEE block symbol

a b fXOR(a, b) = a Å b A B Y
0 0 0 L L L
0 1 1 L H H
1 0 1 H L H
1 1 0 H H L

A A
Y YB B

=1

AÅB = #$.& + #&. $

Digital Logic Design: Logic Gates 52

Logic Gates: XOR (cont’d)
• POS of XOR

a Å b

• Some useful relationships
◦ a Å a = 0
◦ a Å = 1
◦ a Å 0 = a
◦ a Å 1 =
◦
◦ a Å b = b Å a
◦ a Å (b Å c) = (a Å b) Å c

))((
)()(

baba
babbaa
bbbabaaa

baba

++=

+++=

+++=

+=

a

a
baba Å=Å

Digital Logic Design: Logic Gates 53

Logic Gates: Sample 2
• Implement a device which takes two inputs and indicates whether their
sum is greater than 1 or not?

• Inputs and outputs are 1 bit.

Digital Logic Design: Logic Gates 54

ab sum(a, b) sum(a, b) = 1? f(a, b) = a Å b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 False 0

Logic Gates: Sample 2
•Mathematical sum of inputs is one

◦ Output of XOR gate is asserted
◦ Output of XOR is the modulo-2 sum of its inputs.

ab sum(a, b) sum(a, b) = 1? f(a, b) = a Å b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 False 0

Digital Logic Design: Logic Gates 55

Logic Gates: XNOR
• Exclusive-NOR (XNOR)

•(a) XOR logic function

•(b) Electronic XOR gate

•(c) Standard symbol

•(d) IEEE block symbol

AÅB = A B = $A. B + $B. A

(c)

YB
A

(d)

a b
0
0
1
1

0
1
0
1

1
0
0
1

(a)

Y
B
A

A B Y
L
L
H
H

L
H
L
H

H
L
L
H

(b)

fXNOR (a, b) = a b

=1

Digital Logic Design: Logic Gates 56

Logic Gates: XNOR: POS
• POS of XOR

a Å b

• Some useful relationships
◦ a Å a = 0
◦ a Å = 1
◦ a Å 0 = a
◦ a Å 1 =
◦
◦ a Å b = b Å a
◦ a Å (b Å c) = (a Å b) Å c

))((
)()(

baba
babbaa
bbbabaaa

baba

++=

+++=

+++=

+=

a

a
baba Å=Å

Digital Logic Design: Logic Gates 57

Logic Gates: XNOR: SOP
• SOP and POS of XNOR

a b

baab
bbbaabaa

baba
baba

baba

ba

+=

+++=

++=

×=

+=

Å=

))((

Digital Logic Design: Logic Gates 58

Logic Gates: XNOR:
Is it Correct?

aÅ"b = a b

Digital Logic Design: Logic Gates 59

Logic Gates: XNOR:
Is it Correct?

aÅ"b = a b

Digital Logic Design: Logic Gates 60

aÅ"% = &'. "% + '. %

a b = a. % + "a. "b

Logic Gates: Buffer
•F(x)= x

•Boolean function is a connection.

•Usage
◦ Amplify an input signal
◦ Permits more gates to be attached to output

X F
X F

0
1
0
1

Digital Logic Design: Logic Gates 61

Logic Gates: Hi-Impedance
• Logic gates have 0 or 1 as output; Two-state logic

◦ Their output cannot connect together

• Three-state logic:
◦ Adds a third value; Hi-Impedance output, Hi-Z
◦ Three output values: 1, 0, and Hi-Z
◦ Output appears to be disconnected from the input
◦ Behaves as an open circuit between gate input & output
◦ Hi-impedance gates can connect their outputs together

Digital Logic Design: Logic Gates 62

Logic Gates: 3-State Buffer
• Two inputs

◦ Data input (IN)
◦ Enable control input (EN)

• One output
◦ output (OUT) EN IN OUT

0 X Hi-Z
1 0 0
1 1 1

IN

EN

OUT

Digital Logic Design: Logic Gates 63

Logic Gates: 3-State Buffer
(cont’d)
• Active high

• Active low

Digital Logic Design: Logic Gates 64

Logic Gates: 3-State Buffer
(cont’d)
• Output of 3-state buffers can be wired together
• At most one 3-state buffer can be enabled.

◦ Resolved output is equal to the output of the enabled 3-state buffer
• If multiple 3-state buffers are enabled at the same time

◦ Conflicting outputs will burn the circuit

IN0
EN0

OUTIN1
EN1

IN2
EN2

O0

O1

O2

Resolution Table
O0 O1 O2 OUT

0 or 1 Hi-Z Hi-Z O0
Hi-Z 0 or 1 Hi-Z O1

Hi-Z Hi-Z 0 or 1 O2

Hi-Z Hi-Z Hi-Z Hi-Z

0 or 1 0 or 1 0 or 1 Burn

Digital Logic Design: Logic Gates 65

3-State Buffer & Data Bus
• Isolate devices and circuits from the data bus and one another

Digital Logic Design: Logic Gates 66

Logic Gates: 3-State Buffer
(cont’d)

74LS244 Octal Tri-state Buffer

74LS365

• TTL ICs

Digital Logic Design: Logic Gates 67

Logic Gates: Types
• Signals and logic values

◦ A signal that is set to logic 1 is said to be asserted, active, or true.
◦ An active-high signal is asserted when it is high (positive logic).
◦ An active-low signal is asserted when it is low (negative logic).

• Positive logic

• Negative logic

Electric Signal Logic Value
Positive Logic Negative Logic

High Voltage (H) 1 0
Low Voltage (L) 0 1

Digital Logic Design: Logic Gates 68

Negative Logic: AND
• (a) AND gate truth table (L=1, H=0)

• (b) Alternate AND gate symbol (in negative logic)

• (c) Preferred usage

• (d) Improper usage

Digital Logic Design: Logic Gates 69

A B Y

YB
A

a
b y = a + b

y = aba
b

1
1
0
0

1
0
1
0

1
1
1
0

(a) (b)

(c)

(d)

Logic Gates: Negative Logic:
AND (cont’d)
y = a . b =

A B Y

YB
A

a
b y = a + b

y = aba
b

1
1
0
0

1
0
1
0

1
1
1
0

(a) (b)

(c)

(d)

),(bafbaba OR=+=×

),()()(bafbabay OR=+=+=

Digital Logic Design: Logic Gates 70

Logic Gates: Negative Logic:
OR
• (a) OR gate truth table (L=1, H=0)

• (b) Alternate OR gate symbol (in negative logic)

• (c) Preferred usage

• (d) Improper usage

1
1
0
0

1
0
1
0

1
0
0
0

(a) (b)

A B Y

YB
A

a
b

a
b

y = ab

y = a + b

(c)

(d)

(a)

Digital Logic Design: Logic Gates 71

Logic Gates: Negative Logic:
OR (cont’d)

1
1
0
0

1
0
1
0

1
0
0
0

(a) (b)

A B Y

YB
A

a
b

a
b

y = ab

y = a + b

(c)

(d)

(a)

),(bafbababay AND=×=+=+=

),()()(bafbabay AND=×=×=

Digital Logic Design: Logic Gates 72

Logic Gates: Sample 4
•Building smoke alarm system

Digital Logic Design: Logic Gates 73

Building Smoke Alarm System
• Components:

◦ Two Active-low smoke detectors
◦ A sprinkler

◦ Active-low input to the sprinkler
◦ An automatic telephone dialer

◦ Active-low input to the telephone dialer

• Behavior:
◦ Sprinkler is activated if either smoke detector detects smoke.
◦ When both smoke detector detect smoke, fire department is called.

Digital Logic Design: Logic Gates 74

2,1 DD

SPK

DIAL

21 DDSPK +=
21 DDDIAL ×=

Building Smoke Alarm System

21 DDSPK +=
21 DDDIAL ×= G1 D1 + D 2

G2

Smoke
detectors

D1
D2

Sprinkler

SPK

DIAL

Telephone
dialerD1 D2

Digital Logic Design: Logic Gates 75

Electronic Logic Gates

b
a

b
a

b
a

b
a

b
a

Symbol set 1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR

a

Å b

Symbol set 2
(ANSI/IEEE Standard 91-1984)

&
b
a

¹
1

b
a

b
a

&
b
a

¹
1

b
a

= 1
b
a

1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR Å b

•Logic gates

Digital Logic Design: Logic Gates 76

Logic Gates: Sample 1

1B

Vcc 4B 4A 4Y 3B 3A 3Y

1A 1Y 2B2A 2Y

14 13 12 11 10 9 8

7654321
GND

7400: Y = AB
Quadruple two-input NAND gates

1A

Vcc 4Y 4B 4A 3Y 3B 3A

1Y 1B 2A2Y 2B

14 13 12 11 10 9 8

7654321
GND

7402: Y = A + B
Quadruple two-input NOR gates

1B

Vcc 4B 4A 4Y 3B 3A 3Y

1A 1Y 2B2A 2Y

14 13 12 11 10 9 8

7654321
GND1Y

Vcc 6A 6Y 5A 5Y 4A 4Y

1A 2A 3A2Y 3Y

14 13 12 11 10 9 8

7654321
GND

7404: Y = A
Hex inverters

7408: Y = AB
Quadruple two-input AND gates

Digital Logic Design: Logic Gates 77

Logic Gates: Sample 2

1B

Vcc 1C 1Y 3C 3B 3A 3Y

1A 2A 2C2B 2Y

14 13 12 11 10 9 8

7654321
GND

7410: Y = ABC
Triple three-input NAND gates

1B

Vcc 2D 2C NC 2B 2A 2Y

1A NC 1D1C 1Y

14 13 12 11 10 9 8

7654321
GND

7420: Y = ABCD
Dual four-input NAND gates

Digital Logic Design: Logic Gates 78

Logic Gates: Sample 3

1B

Vcc 4B 4A 4Y 3B 3A 3Y

1A 1Y 2B2A 2Y

14 13 12 11 10 9 8

7654321
GNDB

Vcc NC H G NC NC Y

A C ED F

14 13 12 11 10 9 8

7654321
GND

7430: Y = ABCDEFGH
8-input NAND gate

7432: Y = A + B
Quadruple two-input OR gates

1B

Vcc 4B 4A 4Y 3B 3A 3Y

1A 1Y 2B2A 2Y

14 13 12 11 10 9 8

7654321
GND

7486: Y = A Å B
Quadruple two-input exclusive-OR gates

Digital Logic Design: Logic Gates 79

Thank You

Digital Logic Design: Intro 80

