

Iran University of Science & Technology

IUST

Digital Logic Design

Hajar Falahati

Department of Computer Engineering IRAN University of Science and Technology

hfalahati@iust.ac.ir

Switching Functions

• Switching algebra

- Boolean algebra with the set of elements $K = \{0, 1\}$
- If there are *n* variables, we can define 2^{2^n} switching functions.

AB	f_0	f_l	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
00	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
01	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
10	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
11	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

•A switching expression as follows:

• $f_0(A,B) = 0$, $f_6(A,B) = AB' + A'B$, $f_{11}(A,B) = AB + A'B + A'B' = A' + B$, ...

Some Definition: 1

•Literal

- A variable, complemented or uncomplemented
- $\circ A, \overline{A}, B, \overline{B}$

Product term

- A literal or literals ANDed together
- $(A \cdot B \cdot \overline{C})$, $(\overline{A} \cdot C)$, $(B \cdot \overline{C})$

•Sum term

- A literal or literals ORed together.
- $(A + B + \overline{C}), (\overline{A} + C), (B + \overline{C})$

• Minterm

- A product that includes all the variables
- $(A \cdot B \cdot \overline{C})$, $(\overline{A} \cdot \overline{B} \cdot C)$, $(\overline{A} \cdot B \cdot \overline{C})$

Maxterm

A sum that includes all the variables

•
$$(A + B + \overline{C})$$
, $(\overline{A} + \overline{B} + C)$, $(\overline{A} + B + \overline{C})$

Algebraic Forms

•SOP

- Sum of Products
- ORing product terms
- f(A, B, C) = ABC + A'C + B'C

•POS

- Product of Sums
- ANDing sum terms
- f(A, B, C) = (A' + B' + C')(A + C')(B + C')

Canonical SOP

- Represented as a sum of minterms only.
- Example: $f_1(A,B,C) = A'BC' + ABC' + A'BC + ABC$

Canonical POS

- Represented as a product of maxterms only.
- Example: f₂(A,B,C) = (A+B+C)(A+B+C')(A'+B+C)(A'+B+C')

0

Outline

• Logic Gates

Transistors

Transistor

• Computers are built from very large numbers of very simple structures

- Intel's Pentium IV microprocessor, first offered for sale in 2000, was made up of more than 42 million MOS transistors
- Intel's Core i7 Broadwell-E, offered for sale in 2016, is made up of more than 3.2 billion MOS transistors

Transistor Structure

- Structure of a typical transistor
- A transistor conducts when the channel is filled with carriers
 - Negative carriers (free electrons)
 - Positive carriers (holes electrons)
- Why is this useful?
 - We can combine many of these to realize simple logic gates

BJT Transistor

• Bipolar Junction Transistor (BJT)

MOS Transistor

•Field Effect Transistors (FET)

- PMOS: if Gain =0 \rightarrow electron flow from drain to source
- NMOS: if Gain =1 \rightarrow electron flow from drain to source

How Does a Transistor Work?

- In order for the lamp to glow, electrons must flow
- In order for electrons to flow, there must be a closed circuit from the power supply to the lamp and back to the power supply
- The lamp can be turned on and off by simply manipulating the wall switch to make or break the closed circuit

Switches

- A switch has two states
 - Closed/ On
 - Open/OFF

Switches: Sample 1

Switches: Sample1 (cont'd)

- Find L(A,B,C,D)
 - A (B \overline{C} + D)
 - A B \overline{C} + A D

Switching and Transistors

 Instead of the wall switch, we could use an n-type or a p-type MOS transistor to make or break the closed circuit

If the gate of an n-type transistor is supplied with a high voltage, the connection from source to drain acts like a piece of wire

Depending on the technology, 0.3V to 3V

If the gate of the -type transistor is supplied with OV, the connection between the source and drain is broken

How Does a Transistor Work?

• The n-type transistor in a circuit with a battery and a bulb

How Does a Transistor Work?

 The p-type transistor works in exactly the opposite fashion from the n-type transistor

Logic gates

One Level Higher in Abstraction

- How do we build logic out of MOS transistors?
- We construct basic logic structures out of individual MOS transistors
- These logical units are named logic gates
 - They implement simple **Boolean** functions

	-
Problem	
Algorithm	
Program/Language	
Runtime System (VM, OS, MM)	
ISA (Architecture)	
Microarchitecture	
Logic	
Devices	
Electrons	

IUST

Making Logic Blocks Using CMOS Technology

 Modern computers use both n-type and p-type transistors, i.e. Complementary MOS (CMOS) technology

nMOS + pMOS = CMOS

•The simplest logic structure that exists in a modern computer

Functionality of Our CMOS Circuit

What happens when the input is connected to 0V?

IUST

Functionality of Our CMOS Circuit

What happens when the input is connected to 3V?

CMOS NOT Gate

- This is actually the CMOS NOT Gate
- Why do we call it NOT?
 - If A = 0V then Y = 3V
 - If A = 3V then Y = 0V
- Digital circuit: one possible interpretation
 - Interpret OV as logical (binary) O value
 - Interpret 3V as logical (binary) 1 value

CMOS NOT Gate

- - What would be the logical output of the circuit for each possible input

Logic Gates: NOT

- (a) NOT logic function.
- (b) Electronic NOT gate.
- (c) Standard symbol.
- (d) IEEE block symbol.

Another CMOS Gate: What Is This?

• Let's build more complex gates!

CMOS NAND Gate

A	B	P1	P2	N1	N2	Y
0	0					
0	1					
1	0					
1	1					

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

Let's build more complex gates! $Y = \overline{A \cdot B} = \overline{AB}$ 3V **P1 P2 N2 N1** Y B Α **P2** Out (Y) OFF 0 0 ON ON OFF 1 **N1** In (A) OFF 1 0 1 ON OFF ON **N2** In (B) 1 0 1 1 ∇

CMOS NAND Gate

P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

Let's build more complex gates! $Y = \overline{A \cdot B} = \overline{AB}$ 3V **P2 N2 P1** B **N1** Y Α **P2** Out (Y) ON ON OFF OFF 1 0 0 **N1** In (A) OFF 1 1 ON OFF ON 0 **N2** In (B) 1 1 0 OFF ON ON OFF 1 1 ∇

CMOS NAND Gate

- P1 and P2 are in parallel; only one must be ON to pull the output up to 3V
- N1 and N2 are connected in series; both must be ON to pull the output to OV

Let's build more complex gates! $Y = \overline{A \cdot B} = \overline{AB}$ 3V **P2 N2 P1** Y B **N1** Α **P2** Out (Y) ON ON OFF OFF 1 0 0 **N1** In (A) 1 1 ON OFF OFF ON 0 **N2** In (B) 1 1 0 OFF ON ON OFF 0 1 OFF OFF ON ON ∇

CMOS NAND Gate

- P1 and P2 are in parallel; only one must be ON to pull the output up to 3V
- N1 and N2 are connected in series; both must be ON to pull the output to OV

CMOS NAND Gate

• Let's build more complex gates!

Logic Gates: NAND

- •(a) NAND logic function
- •(b) Electronic NAND gate
- •(c) Standard symbol
- •(d) IEEE block symbol

a b	$fNAND (a, b) = \overline{ab}$	A	B	Y
0 0	1	L	L	Н
0 1	1	L	Η	Η
1 0	1	Η	L	Η
1 1	0	Н	Η	L
	(a)		(b)	

Logic Gates: NAND: Properties $f_{NAND}(a,a) = a \cdot a = \overline{a} = f_{NOT}(a)$ \overline{a} $f_{NAND}(\overline{a}, \overline{b}) = \overline{a} \cdot \overline{b} = a + b = f_{OR}(a, b)$ a·b a·b b $\overline{f}_{NAND}(a,b) = a \cdot b = a \cdot b = f_{AND}(a,b)$ a+b $a \cdot b = a + b$

• NAND gate may be used to implement all three elementary operators.

NAND: Universal Gate

•Universal gate

- A gate type that can implement any Boolean function.
- NAND is a universal gate

AND gate

Logic Gates: NAND (cont'd)

- NAND operation is NOT associative
- (X NAND Y) NAND $Z \neq X$ NAND (Y NAND Z)

CMOS AND Gate

- How can we make a AND gate?
- Let's check NAND gate

$$Y = A \cdot B = AB$$

CMOS AND Gate

How can we make a AND gate?

Logic Gates: AND

- (a) AND logic function.
- (b) Electronic AND gate.
- (c) Standard symbol.
- (d) IEEE block symbol.

Logic Gates: OR

- (a) OR logic function.
- (b) Electronic OR gate.
- (c) Standard symbol.
- (d) IEEE block symbol.

Logic Gates: NOR

- •(a) NAND logic function
- •(b) Electronic NAND gate
- •(c) Standard symbol
- •(d) IEEE block symbol

a	b	$f_{NOR}(a, b) = \overline{a + b}$	A B Y
0	0	1	L L H
0	1	0	L H L
1	0	0	H L L
1	1	0	H H L
		(a)	(b)

Logic Gates: NOR: Properties

NOR gate may be used to implement all three elementary operators
NOR is universal gate

$$f_{NOR}(a,a) = \overline{a+a} = \overline{a} = f_{NOT}(a)$$
$$\overline{f_{NOR}(a,b)} = \overline{\overline{a+b}} = a+b = f_{OR}(a,b)$$
$$f_{NOR}(\overline{a},\overline{b}) = \overline{\overline{a+b}} = a \cdot b = f_{AND}(a,b)$$

NOT gate

OR gate

AND gate

Logic Gates: NOR (cont'd)

- NOR operation is NOT associative
- (X NOR Y) NOR $Z \neq X$ NOr (Y NOR Z)

Logic Gates: Sample 3

• \geq 1 in IEEE symbol

ab	sum(a, b)	$\operatorname{sum}(a, b) \ge 1$	$f_{OR}(a, b) = a + b$
00	0	False	0
01	1	True	1
10	1	True	1
11	2	True	1

Logic Gates: Sample 1

• Implement a device which takes two inputs and indicates whether their sum is greater than 1 or not?

ab	sum(a, b)	$\operatorname{sum}(a, b) \ge 1$
00	0	False
01	1	True
10	1	True
11	2	True

Logic Gates: Sample 1

• Implement a device which takes two inputs and indicates whether their sum is greater than 1 or not?

ab	sum(a, b)	$sum(a, b) \ge 1$	$f_{OR}(a, b) = a + b$
00	0	False	0
01	1	True	1
10	1	True	1
11	2	True	1

Logic Gates: XOR

- Exclusive-OR (XOR)
- •(a) XOR logic function
- •(b) Electronic XOR gate
- •(c) Standard symbol
- •(d) IEEE block symbol

a h	$f(a,b) = a \oplus b$	ΔR	V
u U	$f_{XOR}(a, b) = a \oplus b$	MD	1
0 0	0	LL	L
01	1	LH	Η
10	1	ΗL	Η
11	0	ΗH	L

 $A \oplus B = \overline{A} \cdot B + \overline{B} \cdot A$

Logic Gates: XOR (cont'd)

POS of XOR
 a ⊕ b

 $= \overline{a}b + a\overline{b}$ $= \overline{a}a + \overline{a}b + a\overline{b} + b\overline{b}$ $= \overline{a}(a+b) + \overline{b}(a+b)$ $= (\overline{a} + \overline{b})(a+b)$

- Some useful relationships
 - $\circ a \oplus a = 0$
 - $\circ a \oplus \overline{a} = 1$
 - $\circ a \oplus 0 = a$
 - $a \oplus 1 = \overline{a}$
 - $\circ \overline{a} \oplus \overline{b} = a \oplus b$
 - $\circ a \oplus b = b \oplus a$
 - $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

Logic Gates: Sample 2

- Implement a device which takes two inputs and indicates whether their sum is greater than 1 or not?
- Inputs and outputs are 1 bit.

ab	sum(a, b)	sum(a, b) = 1?
00	0	False
01	1	True
10	1	True
11	2	False

Logic Gates: Sample 2

- Mathematical sum of inputs is one
 - Output of XOR gate is asserted
 - Output of XOR is the *modulo*-2 sum of its inputs.

ab	sum(a, b)	sum(a, b) = 1?	$f(a, b) = a \oplus b$
00	0	False	0
01	1	True	1
10	1	True	1
11	2	False	0

Logic Gates: XNOR

- Exclusive-NOR (XNOR)
- •(a) XOR logic function
- •(b) Electronic XOR gate
- •(c) Standard symbol
- •(d) IEEE block symbol

$$\overline{\mathbf{A} \oplus \mathbf{B}} = \mathbf{A} \odot \mathbf{B} = \overline{\overline{\mathbf{A}} \cdot \mathbf{B} + \overline{\mathbf{B}} \cdot \mathbf{A}}$$

Logic Gates: XNOR: POS

• POS of XOR

 $a \oplus b$

- $= \overline{a}a + \overline{a}b + a\overline{b} + b\overline{b}$ $= \overline{a}(a+b) + \overline{b}(a+b)$ $= (\overline{a} + \overline{b})(a+b)$
- Some useful relationships

 $=\overline{a}b+a\overline{b}$

- *a* ⊕ *a* = 0
- $\circ a \oplus \overline{a} = 1$
- $a \oplus 0 = a$
- $a \oplus 1 = \overline{a}$
- $\overline{a} \oplus \overline{b} = a \oplus b$
- $a \oplus b = b \oplus a$
- $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

Logic Gates: XNOR: SOP

SOP and POS of XNOR

$$a \odot b = \overline{a \oplus b}$$

$$= \overline{a \oplus b}$$

$$= \overline{ab + a\overline{b}}$$

$$= \overline{ab} \cdot \overline{ab}$$

$$= (a + \overline{b})(\overline{a} + b)$$

$$= a\overline{a} + ab + \overline{a}\overline{b} + \overline{b}b$$

$$= ab + \overline{a}\overline{b}$$

Logic Gates: XNOR: Is it Correct?

 $a \oplus \overline{b} = a \odot b$

Logic Gates: XNOR: Is it Correct?

 $a \oplus \overline{b} = a \odot b$

$$\mathbf{a} \oplus \overline{b} = \overline{a} \cdot \overline{b} + a \cdot b$$
$$\mathbf{a} \odot \mathbf{b} = \mathbf{a} \cdot b + \overline{a} \cdot \overline{\mathbf{b}}$$

Logic Gates: Buffer

•F(x)= x

•Boolean function is a connection.

•Usage

- Amplify an input signal
- Permits more gates to be attached to output

Logic Gates: Hi-Impedance

- Logic gates have 0 or 1 as output; Two-state logic
 - Their output cannot connect together
- Three-state logic:
 - Adds a third value; Hi-Impedance output, Hi-Z
 - Three output values: 1, 0, and Hi-Z
 - Output appears to be disconnected from the input
 - Behaves as an open circuit between gate input & output
 - Hi-impedance gates can connect their outputs together

Logic Gates: 3-State Buffer

 Two inputs IN • Data input (IN) OUT Enable control input (EN) EN • One output output (OUT) EN IN OUT Hi-Z Χ 0 1 0 0 1 1 1 closed open Q = Z Q = A Enable = "0" Enable = "1"

• Active high

Active low

Logic Gates: 3-State Buffer (cont'd)

- Output of 3-state buffers can be wired together
- At most one 3-state buffer can be enabled.
 - Resolved output is equal to the output of the enabled 3-state buffer
- If multiple 3-state buffers are enabled at the same time
 - Conflicting outputs will burn the circuit

Resolution Table			
00	01	02	OUT
0 or 1	Hi-Z	Hi-Z	00
Hi-Z	0 or 1	Hi-Z	01
Hi-Z	Hi-Z	0 or 1	02
Hi-Z	Hi-Z	Hi-Z	Hi-Z
0 or 1	0 or 1	0 or 1	Burn

3-State Buffer & Data Bus

Isolate devices and circuits from the data bus and one another

Logic Gates: Types

- Signals and logic values
 - A signal that is set to logic 1 is said to be asserted, active, or true.
 - An active-high signal is asserted when it is high (positive logic).
 - An active-low signal is asserted when it is low (negative logic).
- Positive logic
- Negative logic

Electric Signal	Logic Value		
	Positive Logic	Negative Logic	
High Voltage (H)	1	0	
Low Voltage (L)	0	1	

Negative Logic: AND

- (a) AND gate truth table (L=1, H=0)
- (b) Alternate AND gate symbol (in negative logic)
- (c) Preferred usage
- (d) Improper usage

Logic Gates: Negative Logic: AND (cont'd)

y = a . b =
$$\overline{\overline{a \cdot b}} = \overline{\overline{a} + \overline{b}} = \overline{f}_{OR}(\overline{a}, \overline{b})$$

 $\overline{y} = \overline{\overline{(\overline{a})} + \overline{(\overline{b})}} = \overline{a + b} = \overline{f}_{OR}(a, b)$

Logic Gates: Negative Logic: OR

- (a) OR gate truth table (L=1, H=0)
- (b) Alternate OR gate symbol (in negative logic)
- (c) Preferred usage
- (d) Improper usage

Logic Gates: Negative Logic: OR (cont'd)

$$y = a + b = \overline{\overline{a + b}} = \overline{\overline{a \cdot \overline{b}}} = \overline{f}_{AND}(\overline{a}, \overline{b})$$
$$\overline{y} = \overline{\overline{(\overline{a})} \cdot \overline{(\overline{b})}} = \overline{a \cdot b} = \overline{f}_{AND}(a, b)$$

Logic Gates: Sample 4

•Building smoke alarm system

Building Smoke Alarm System

• Components:

0	Two Active-low smoke detectors	$\overline{D1},\overline{D2}$
0	A sprinkler	
	 Active-low input to the sprinkler 	SPK
0	An automatic telephone dialer	$\overline{DI4I}$
	 Active-low input to the telephone dialer 	DIAL

• Behavior:

- Sprinkler is activated if either smoke detector detects smoke.
- When both smoke detector detect smoke, fire department is called.

 $\overline{SPK} = \overline{D1 + D2}$ $\overline{DIAL} = \overline{D1 \cdot D2}$

Building Smoke Alarm System

Electronic Logic Gates

Logic gates

Symbol set 2 (ANSI/IEEE Standard 91-1984)

OR

Logic Gates: Sample 1

Logic Gates: Sample 2

Thank You

