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Switching Functions 
• Switching algebra

◦ Boolean algebra with the set of elements K = {0, 1}
◦ If there are n variables, we can define          switching functions.

•A switching expression as follows:
◦ f0(A,B)= 0,  f6(A,B) = AB' + A'B,  f11(A,B) = AB + A'B + A'B' = A' + B, ...

22
n

AB f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
00 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
01 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
10 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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Some Definition: 1
•Literal

◦ A variable, complemented or uncomplemented
◦ ! ,  ! ,  B , "

•Product term
◦ A literal or literals ANDed together
◦ (! $ " $ %) , (! $ %) , (" $ %)

•Sum term
◦ A literal or literals ORed together.
◦ (! + " + %) , (! + %) , (" + %)

• Minterm
◦ A product that includes all the variables 
◦ (! $ " $ %) , (! $ " $ %) , (! $ " $ %)

• Maxterm
◦ A sum that includes all the variables 
◦ (! + " + %) , (! + " + %) , (! + " + %)
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Algebraic Forms
•SOP

◦ Sum of Products 
◦ ORing product terms
◦ f(A, B, C) = ABC + A'C + B’C

•POS
◦ Product of Sums
◦ ANDing sum terms
◦ f (A, B, C) = (A' + B' + C')(A + C')(B + C’)

•Canonical SOP
◦ Represented as a sum of minterms only.
◦ Example: f1(A,B,C) = A'BC' + ABC' + A'BC + ABC

•Canonical POS
◦ Represented as a product of maxterms only.
◦ Example: f2(A,B,C) = (A+B+C)(A+B+C')(A'+B+C)(A'+B+C')        
◦
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Outline
• Logic Gates
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Transistors



Transistor
• Computers are built from very large numbers of very simple structures

◦ Intel’s Pentium IV microprocessor, first offered for sale in 2000, was made up of 
more than 42 million MOS transistors

◦ Intel’s Core i7 Broadwell-E, offered for sale in 2016, is made up of more than 3.2 
billion MOS transistors
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Transistor Structure
• Structure of a typical transistor

• A transistor conducts when the channel is filled with carriers
◦ Negative carriers (free electrons) 
◦ Positive carriers (holes  electrons)

•Why is this useful?
◦ We can combine many of these to realize simple logic gates

channel

DrainSource
Gate SiO2

Body
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BJT Transistor
• Bipolar Junction Transistor (BJT)
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MOS Transistor
•Field Effect Transistors (FET)

◦ PMOS: if Gain =0 à electron flow from drain to source
◦ NMOS: if Gain =1 à electron flow from drain to source

PMOS Transistor

NMOS Transistor

Drain

Source

Gain

Drain

Source

Gain
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Power Supply

Wall Switch

Power Supply

Wall Switch

How Does a Transistor Work?
• In order for the lamp to glow, electrons must flow

• In order for electrons to flow, there must be a closed circuit from the 
power supply to the lamp and back to the power supply

• The lamp can be turned on and off by simply manipulating the wall 
switch to make or break the closed circuit

11



Switches 
• A switch has two states

◦ Closed/ On
◦ Open/ OFF
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Switches Samples
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Switches: Sample 1
• Find L(A,B,C,D) B

A

D

C

A

D

C
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Switches: Sample1 (cont’d) 
• Find L(A,B,C,D)

◦ A (B ̅" + D) 
◦ A B ̅" + A D

◦ A (B + D) ̅"

B
A

D

C

A

D

C
B
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• Instead of the wall switch, we could use an n-type or a p-type MOS 
transistor to make or break the closed circuit

Switching and Transistors

Drain

Source

Gate

Schematic of an n-type
MOS transistor

If the gate of an n-type transistor is supplied 
with a high voltage, the connection from 
source to drain acts like a piece of wire

Depending on the technology, 0.3V to 3V

If the gate of the -type transistor is supplied 
with 0V, the connection between the source 
and drain is broken
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Power Supply

3 Volt

How Does a Transistor Work?
• The n-type transistor in a circuit with a battery and a bulb

Power Supply

0 Volt

Shorthand notation

Gate
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Drain

Source

Gate

How Does a Transistor Work?
• The p-type transistor works in exactly the opposite fashion from the n-type
transistor

The circuit is closed 
when the gate is 
supplied with 3V

The circuit is closed 
when the gate is 
supplied with 0V

Drain

Source

Gate

n-type p-type
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Logic gates



One Level Higher in 
Abstraction  
• How do we build logic out of MOS transistors? 

• We construct basic logic structures out of individual MOS transistors

• These logical units are named logic gates
◦ They implement simple Boolean functions
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Making Logic Blocks Using CMOS Technology
•Modern computers use both n-type and p-type transistors, i.e. 
Complementary MOS (CMOS) technology

•The simplest logic structure that exists in a modern computer

nMOS + pMOS = CMOS

3V

0V

Out (Y)In (A)

n-type

p-type

What does this circuit do?
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Functionality of Our CMOS 
Circuit

What happens when the input is connected to 0V?

3V

0V

Out (Y)0V

3V

0V

Y = 3V

p-type transistor pulls 
the output up

Digital Logic Design: Logic Gates 22



3V

0V

Y = 0V

Functionality of Our CMOS 
Circuit

What happens when the input is connected to 3V?

n-type transistor pulls 
the output down

3V

0V

Out (Y)A= 3V
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A P N Y
0

1

A P N Y
0 ON OFF 1

1

CMOS NOT Gate
• This is actually the CMOS NOT Gate

•Why do we call it NOT?
◦ If A = 0V then Y = 3V
◦ If A = 3V then Y = 0V

• Digital circuit: one possible interpretation
◦ Interpret 0V as logical (binary) 0 value
◦ Interpret 3V as logical (binary) 1 value

3V

0V

Out (Y)In (A)
P

N

! = $̅
A P N Y
0 ON OFF 1

1 OFF ON 0
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CMOS NOT Gate
•We call it a NOT gate 3V

0V

Out (Y)In (A)
P

N
A Y NOT

Y = A

A Y
0 1
1 0

A Y

! = $̅

• Truth Table
◦ What would be the logical output of the circuit for each possible input
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Logic Gates: NOT
• (a) NOT logic function.

• (b) Electronic NOT gate.

• (c) Standard symbol.

• (d) IEEE block symbol.

A Y

YA

L
H

H
L

(b)

(c)

(d)

YA 1

a
0
1

1
0

(a)

fNOT  (a) =  a
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Another CMOS Gate: What Is 
This?
• Let’s build more complex gates!

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2
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CMOS NAND Gate
• Let’s build more complex gates!

A B P1 P2 N1 N2 Y
0 0
0 1
1 0
1 1

! = # $ % = #%3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2
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CMOS NAND Gate

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1
1 0
1 1

! = # $ % = #%• Let’s build more complex gates!
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2
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CMOS NAND Gate

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

! = # $ % = #%• Let’s build more complex gates!
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0
1 1
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CMOS NAND Gate

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

! = # $ % = #%• Let’s build more complex gates!
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1

• N1 and N2 are connected in series; both must be ON to pull the output to 0V
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CMOS NAND Gate

• P1 and P2 are in parallel; only one must be ON to pull the output up to 3V

! = # $ % = #%• Let’s build more complex gates!
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1 OFF OFF ON ON 0

• N1 and N2 are connected in series; both must be ON to pull the output to 0V

Digital Logic Design: Logic Gates 32



CMOS NAND Gate

! = # $ % = #%

NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

A
YB

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

• Let’s build more complex gates!
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Logic Gates: NAND 
•(a) NAND logic function

•(b) Electronic NAND gate

•(c) Standard symbol

•(d) IEEE block symbol

A B Y

YB
A

L
L
H
H

L
H
L
H

H
H
H
L

(b)

(c)

YB
A

(d)

YB
A

(e)

&

fNAND  (a, b) =  aba b
0
0
1
1

0
1
0
1

1
1
1
0

(a)

!" = $! + $"
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Logic Gates: NAND: Properties

a
b

a·b

a · b= a+b a
b

a+ba

b

a

b

a !"a
a

!"
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),(),(

),(),(

)(),(

bafbababaf

bafbababaf

afaaaaaf

ORNAND

ANDNAND

NOTNAND

=+=×=

=×=×=

==×=

),(),(

),(),(

)(),(

bafbababaf

bafbababaf

afaaaaaf

ORNAND

ANDNAND

NOTNAND

=+=×=

=×=×=

==×=

),(),(

),(),(

)(),(

bafbababaf

bafbababaf

afaaaaaf

ORNAND

ANDNAND

NOTNAND

=+=×=

=×=×=

==×=

a
b

a·b a·b

• NAND gate may be used to implement all three elementary operators.



NAND: Universal Gate
•Universal gate 

◦ A gate type that can implement any Boolean function. 
◦ NAND is a universal gate

a
b

ab f(a, a) = a a = af(a, b) =  ab = ab

AND gate NOT gate

f(a, b) =  a + b = a + b

b

aa

b

OR gate

a
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Logic Gates: NAND (cont’d)
• NAND operation is NOT associative

• (X NAND Y) NAND Z ≠ X NAND (Y NAND Z)

X
Y
Z

ZYX)Z,Y,X(F ××=

X
Y
Z

ZYX)Z,Y,X(F ++=
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CMOS AND Gate

39

• How can we make a AND gate? 
• Let’s check NAND gate

A B Y
0 0 0
0 1 0
1 0 0

111

A
YB

! = # $ % = #% ! = # $ % = #%

NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B Y

A
YB



CMOS AND Gate

40

• How can we make a AND gate?

A B Y
0 0 0
0 1 0
1 0 0

111

A
YB

! = # $ % = #%

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

We make an AND gate using
one NAND gate and 

one NOT gate



Logic Gates: AND
• (a) AND logic function.

• (b) Electronic AND gate.

• (c) Standard symbol.

• (d) IEEE block symbol.

A B Y YB
A

L
L
H
H

L
H
L
H

L
L
L
H

(b)

(c)

(d)

YB
A &

fAND  (a, b) =  aba b
0
0
1
1

0
1
0
1

0
0
0
1

(a)
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Logic Gates: OR
• (a) OR logic function.

• (b) Electronic OR gate.

• (c) Standard symbol.

• (d) IEEE block symbol.

A B Y Y
B
A

L
L
H
H

L
H
L
H

L
H
H
H

(b)

(c)

(d)

Y
B
A ³1

(a, b) =  a  +  ba b
0
0
1
1

0
1
0
1

0
1
1
1

(a)

fOR
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Logic Gates: NOR 
•(a) NAND logic function

•(b) Electronic NAND gate

•(c) Standard symbol

•(d) IEEE block symbol

A B Y
L
L
H
H

L
H
L
H

H
L
L
L

(b)

(c) (d)

Y
B
A

(e)

¹1

fNOR  (a, b) =  a + ba b
0
0
1
1

0
1
0
1

1
0
0
0

(a)

YB
A

YB
A

! + # = %!. %#
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Logic Gates: NOR: Properties

),(),(

),(),(

)(),(

bafbababaf

bafbababaf

afaaaaaf

ANDNOR

ORNOR

NOTNOR

=×=+=

=+=+=

==+=
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• NOR gate may be used to implement all three elementary operators
•NOR is universal gate

a
b

OR gate NOT gate

b

aa

b

AND gate

a f(a, a) =  a + a = af(a, b) =  a + b
a + b

f(a, b) =  ab = ab

a
b

OR gate NOT gate

b

aa

b

AND gate

a f(a, a) =  a + a = af(a, b) =  a + b
a + b

f(a, b) =  ab = ab

a
b

OR gate NOT gate

b

aa

b

AND gate

a f(a, a) =  a + a = af(a, b) =  a + b
a + b

f(a, b) =  ab = ab



Logic Gates: NOR (cont’d)
• NOR operation is NOT associative
• (X NOR Y) NOR Z ≠ X NOr (Y NOR Z)

X
Y
Z

ZYX)Z,Y,X(F ++=

X
Y
Z

ZYX)Z,Y,X(F ..=
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Logic Gates
A

YB
A

YBA Y

3V

0V

Out (Y)In (A)
P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A Y
0 1
1 0

A B Y
0 0 1
0 1 1
1 0 1

1 1 0

A B Y
0 0 0
0 1 0
1 0 0

1 1 1



Logic Gates (cont’d)
A

YB
A

YB
A

YB
A

YB
A B Y
0 0 1
0 1 0
1 0 0

1 1 0

A B Y
0 0 0
0 1 1
1 0 1

1 1 1

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

P1
P2

N1 N2

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

P1
P2

N1 N2

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3



Logic Gates: Sample 3
• ³ 1 in IEEE symbol

ab sum(a, b) sum(a, b) ³ 1 fOR(a, b) = a + b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 True 1
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Logic Gates: Sample 1
• Implement a device which takes two inputs and indicates whether their 
sum is greater than 1 or not?
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ab sum(a, b) sum(a, b) ³ 1 fOR(a, b) = a + b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 True 1



Logic Gates: Sample 1

ab sum(a, b) sum(a, b) ³ 1 fOR(a, b) = a + b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 True 1
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Logic Gates: XOR 
• Exclusive-OR (XOR)

•(a) XOR logic function

•(b) Electronic XOR gate

•(c) Standard symbol

•(d) IEEE block symbol

a b fXOR(a, b) = a Å b A B Y
0 0 0 L L L
0 1 1 L H H
1 0 1 H L H
1 1 0 H H L

A A
Y YB B

=1

AÅB = #$.& + #&. $
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Logic Gates: XOR (cont’d)
• POS of XOR

a Å b

• Some useful relationships
◦ a Å a = 0
◦ a Å = 1
◦ a Å 0 = a
◦ a Å 1 =    
◦
◦ a Å b = b Å a
◦ a Å (b Å c) = (a Å b) Å c

))((
)()(

baba
babbaa
bbbabaaa

baba

++=

+++=

+++=

+=

a

a
baba Å=Å
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Logic Gates: Sample 2
• Implement a device which takes two inputs and indicates whether their 
sum is greater than 1 or not?

• Inputs and outputs are 1 bit. 
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ab sum(a, b) sum(a, b) = 1? f(a, b) = a Å b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 False 0



Logic Gates: Sample 2
•Mathematical sum of inputs is one

◦ Output of XOR gate is asserted
◦ Output of XOR is the modulo-2 sum of its inputs.

ab sum(a, b) sum(a, b) = 1? f(a, b) = a Å b
00 0 False 0
01 1 True 1
10 1 True 1
11 2 False 0

Digital Logic Design: Logic Gates 55



Logic Gates: XNOR 
• Exclusive-NOR (XNOR)

•(a) XOR logic function

•(b) Electronic XOR gate

•(c) Standard symbol

•(d) IEEE block symbol

AÅB = A B = $A. B + $B. A

(c)

YB
A

(d)

a b
0
0
1
1

0
1
0
1

1
0
0
1

(a)

Y
B
A

A B Y
L
L
H
H

L
H
L
H

H
L
L
H

(b)

fXNOR (a, b) =  a     b

=1
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Logic Gates: XNOR: POS
• POS of XOR

a Å b

• Some useful relationships
◦ a Å a = 0
◦ a Å = 1
◦ a Å 0 = a
◦ a Å 1 =    
◦
◦ a Å b = b Å a
◦ a Å (b Å c) = (a Å b) Å c

))((
)()(

baba
babbaa
bbbabaaa

baba

++=

+++=

+++=

+=

a

a
baba Å=Å
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Logic Gates: XNOR: SOP
• SOP and POS of XNOR

a b

baab
bbbaabaa

baba
baba

baba

ba

+=

+++=

++=

×=

+=

Å=

))((
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Logic Gates: XNOR:
Is it Correct?

aÅ"b = a b
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Logic Gates: XNOR:
Is it Correct?

aÅ"b = a b
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Logic Gates: Buffer 
•F(x)= x

•Boolean function is a connection.

•Usage
◦ Amplify an input signal
◦ Permits more gates to be attached to output

X F
X F

0
1
0
1
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Logic Gates: Hi-Impedance 
• Logic gates have 0 or 1 as output; Two-state logic

◦ Their output cannot connect together

• Three-state logic:
◦ Adds a third value; Hi-Impedance output, Hi-Z 
◦ Three output values: 1, 0, and Hi-Z 
◦ Output appears to be disconnected from the input
◦ Behaves as an open circuit between gate input & output
◦ Hi-impedance gates can connect their outputs together

Digital Logic Design: Logic Gates 62



Logic Gates: 3-State Buffer 
• Two inputs

◦ Data input (IN)
◦ Enable control input (EN)

• One output
◦ output (OUT) EN IN OUT

0 X Hi-Z
1 0 0
1 1 1

IN

EN

OUT
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Logic Gates: 3-State Buffer 
(cont’d)
• Active high 

• Active low 

Digital Logic Design: Logic Gates 64



Logic Gates: 3-State Buffer 
(cont’d)
• Output of 3-state buffers can be wired together
• At most one 3-state buffer can be enabled. 

◦ Resolved output is equal to the output of the enabled 3-state buffer
• If multiple 3-state buffers are enabled at the same time 

◦ Conflicting outputs will burn the circuit

IN0
EN0

OUTIN1
EN1

IN2
EN2

O0

O1

O2

Resolution Table
O0 O1 O2 OUT

0 or 1 Hi-Z Hi-Z O0
Hi-Z 0 or 1 Hi-Z O1

Hi-Z Hi-Z 0 or 1 O2

Hi-Z Hi-Z Hi-Z Hi-Z

0 or 1 0 or 1 0 or 1 Burn
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3-State Buffer & Data Bus
• Isolate devices and circuits from the data bus and one another
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Logic Gates: 3-State Buffer 
(cont’d)

74LS244 Octal Tri-state Buffer

74LS365

• TTL ICs
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Logic Gates: Types  
• Signals and logic values

◦ A signal that is set to logic 1 is said to be asserted, active, or true.
◦ An active-high signal is asserted when it is high (positive logic).
◦ An active-low signal is asserted when it is low (negative logic).

• Positive logic 

• Negative logic 

Electric Signal Logic Value
Positive Logic           Negative Logic

High Voltage (H) 1 0
Low Voltage (L) 0 1
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Negative Logic: AND
• (a) AND gate truth table ( L=1, H=0)

• (b) Alternate AND gate symbol (in negative logic)

• (c) Preferred usage

• (d) Improper usage

Digital Logic Design: Logic Gates 69

A B Y

YB
A

a
b y = a + b

y = aba
b

1
1
0
0

1
0
1
0

1
1
1
0

(a) (b)

(c)

(d)



Logic Gates: Negative Logic: 
AND (cont’d)
y = a . b = 

A B Y

YB
A

a
b y = a + b

y = aba
b

1
1
0
0

1
0
1
0

1
1
1
0

(a) (b)

(c)

(d)

),( bafbaba OR=+=×

),()()( bafbabay OR=+=+=
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Logic Gates: Negative Logic: 
OR
• (a) OR gate truth table ( L=1, H=0)

• (b) Alternate OR gate symbol (in negative logic)

• (c) Preferred usage

• (d) Improper usage

1
1
0
0

1
0
1
0

1
0
0
0

(a) (b)

A B Y

YB
A

a
b

a
b

y = ab

y = a + b

(c)

(d)

(a)

Digital Logic Design: Logic Gates 71



Logic Gates: Negative Logic: 
OR (cont’d)

1
1
0
0

1
0
1
0

1
0
0
0

(a) (b)

A B Y

YB
A

a
b

a
b

y = ab

y = a + b

(c)

(d)

(a)

),( bafbababay AND=×=+=+=

),()()( bafbabay AND=×=×=
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Logic Gates: Sample 4
•Building smoke alarm system
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Building Smoke Alarm System
• Components:

◦ Two Active-low smoke detectors 
◦ A sprinkler

◦ Active-low input to the sprinkler
◦ An automatic telephone dialer

◦ Active-low input to the telephone dialer

• Behavior:
◦ Sprinkler is activated if either smoke detector detects smoke.
◦ When both smoke detector detect smoke, fire department is called.
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2,1 DD

SPK

DIAL

21 DDSPK +=
21 DDDIAL ×=



Building Smoke Alarm System

21 DDSPK +=
21 DDDIAL ×= G1 D1 + D 2

G2

Smoke
detectors

D1
D2

Sprinkler

SPK

DIAL

Telephone
dialerD1  D2
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Electronic Logic Gates

b
a

b
a

b
a

b
a

b
a

Symbol set 1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR

a

Å b

Symbol set 2
(ANSI/IEEE Standard 91-1984)

&
b
a

¹
1

b
a

b
a

&
b
a

¹
1

b
a

= 1
b
a

1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR Å b

•Logic gates
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Logic Gates: Sample 1

1B

Vcc 4B 4A 4Y 3B 3A 3Y

1A 1Y 2B2A 2Y

14 13 12 11 10 9 8

7654321
GND

7400: Y = AB
Quadruple two-input NAND gates

1A

Vcc 4Y 4B 4A 3Y 3B 3A

1Y 1B 2A2Y 2B

14 13 12 11 10 9 8

7654321
GND

7402: Y = A + B
Quadruple two-input NOR gates

1B

Vcc 4B 4A 4Y 3B 3A 3Y

1A 1Y 2B2A 2Y

14 13 12 11 10 9 8

7654321
GND1Y

Vcc 6A 6Y 5A 5Y 4A 4Y

1A 2A 3A2Y 3Y

14 13 12 11 10 9 8

7654321
GND

7404: Y = A
Hex inverters

7408: Y = AB
Quadruple two-input AND gates
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Logic Gates: Sample 2

1B

Vcc 1C 1Y 3C 3B 3A 3Y

1A 2A 2C2B 2Y

14 13 12 11 10 9 8

7654321
GND

7410: Y = ABC
Triple three-input NAND gates

1B

Vcc 2D 2C NC 2B 2A 2Y

1A NC 1D1C 1Y

14 13 12 11 10 9 8

7654321
GND

7420: Y = ABCD
Dual four-input NAND gates
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Logic Gates: Sample 3

1B

Vcc 4B 4A 4Y 3B 3A 3Y

1A 1Y 2B2A 2Y

14 13 12 11 10 9 8

7654321
GNDB

Vcc NC H G NC NC Y

A C ED F

14 13 12 11 10 9 8

7654321
GND

7430: Y = ABCDEFGH
8-input NAND gate

7432: Y = A + B
Quadruple two-input OR gates

1B

Vcc 4B 4A 4Y 3B 3A 3Y

1A 1Y 2B2A 2Y

14 13 12 11 10 9 8

7654321
GND

7486: Y = A Å B
Quadruple two-input exclusive-OR gates
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Thank You 
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