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Signed Numbers 
Representation 

Signed 
bit Magnitude representation

n-1 n-2 n-3 ….. 2 1 0 . -1 -2 …. -m

• Let N = (an-1 ... a0)2

◦ If N ≥ 0, it is represented by (0an-1 ... a0)2

◦ If N < 0, it is represented by [0an-1 ... a0]2

◦ [N]2 = 2n - (N)2

• Diminished radix complement [N]r-1

◦ [N]r-1 = rn - (N)r – 1

• One’s complement (r = 2):
◦ [N]2-1 = 2n - (N)2 - 1



Overflow Condition
• Presenting numbers using two’s complement number system:

◦ Addition: Add two numbers.
◦ Subtraction: Add two’s complement of the subtrahend to the minuend.

◦ Carry bit is discarded
◦ Overflow is detected as the Table.

Case Carry Sign Bit Condition Overflow ?
B + C 0

0
0
1

B + C £ 2n-1 - 1
B + C > 2n-1 - 1

No
Yes

B - C 1
0

0
1

B £ C
B > C

No
No

-B - C 1
1

1
0

-(B + C) ³ -2n-1
-(B + C) < -2n-1

No
Yes



Outline
• Digital codes
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Computer Codes



Computer Codes 
• Code

◦ Systematic use of a given set of symbols 
◦ => for representing information

• Numeric Codes
◦ To represent numbers

◦ Fixed-point numbers
◦ Floating-point number

Color 3-bit 
code

Red 000

Orange 001

Yellow 010

Green 011

Blue 100

Indigo 101

Violet 110

Traffic lights, 3-bit code



Computer Codes (cont’d)
• Fixed-point Numbers

◦ Used for signed integers or integer fractions
◦ Sign magnitude, two’s complement, or one’s complement systems are used.
◦ Integer: (Sign bit) + (Magnitude) + (Implied radix point)
◦ Fraction: (Sign bit) + (Implied radix point) + (Magnitude)



Computer Codes (cont’d)
• Excess or Biased Representation

◦ Excess-K representation of a code C: 
◦ Add K to each code word C.

◦ Used for exponents of floating-point numbers.

• Example
◦ Excess-8 representation of 4-bit two’s 

complement code



Characters and Other Codes
• To represent information as strings of alpha-numeric characters

◦ Binary coded decimal (BCD)
◦ ASCII
◦ Gray code
◦ Error detection codes 
◦ Error correction codes
◦ Hamming  code



Binary Coded Decimal (BCD)
• Used to represent the decimal digits 0 - 9
• 4 bits are used.
• Each bit position has a weight associated with it 

◦ Weighted code
◦ 8, 4, 2, and 1 from MSB to LSB (called 8-4-2-1 code)

•BCD Codes:
◦ 0: 0000
◦ 1: 0001
◦ 2: 0010
◦ 3: 0011
◦ 4: 0100
◦ 5: 0101
◦ 6: 0110
◦ 7: 0111
◦ 8: 1000
◦ 9: 1001



BCD in Applications!
• Used to encode numbers for output to numerical displays

• Used in processors that perform decimal arithmetic

• Example
◦ (9750)10 = (1001, 0111, 0101, 0000)BCD
◦ (9750)10 = (1001011101010000)BCD



BCD: Sample
• (9)10 = (?)BCD
• (29)10 = ()BCD
• (129)10 = ()BCD
• (1029)10 = ()BCD



BCD: Sample (cont’d)
• (9)10 = (1001)BCD

• (29)10 = (0010 1001)BCD = (00101001)BCD

• (129)10 = (0001 0010 1001)BCD = (000100101001)BCD

• (1029)10 = (0001 0000 0010 1001)BCD = (000100000101001)BCD



Gray Code
• Gray code: 

◦ A cyclic code with the property
◦ Cyclic code: a circular shifting of a code word produces another code word
◦ Property: two consecutive code words differ in only 1 bit

◦ Distance between the two code words is 1



Gray Code
• Bit i in gray code

◦ Compare bit i and i+1 in binary code
◦ Similar ==> Gray(i) = 0
◦ Otherwise ==> Gray(i) =1

Digit Binary Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100

Digit Binary Gray Code
0 1000 1100
1 1001 1101
2 1010 1111
3 1011 1110
4 1100 1010
5 1101 1011
6 1110 1001
7 1111 1000



Gray Code Conversion



ASCII
• American Standard Code for 
Information Interchange

◦ Most widely used character 
code

◦ 7-bit ASCII code
◦ Eighth bit is often used for 

error detection (parity bit)

c3c2c1c0

c6c5c4



ASCII (cont’d)
• Control Character 

◦ First 32 characters of ASCII table are used 
for control
◦ 00 – 1F

◦ One control character appears at end of 
ASCII table
◦ DEL

c3c2c1c0

c6c5c4



ASCII (cont’d)
• Example

◦ ASCII code representation of the word 
Digital

Digital

Character Binary Code

D
i
g
i
t
a
l

c3c2c1c0

c6c5c4



ASCII (cont’d)
• Example

◦ ASCII code representation of the word 
Digital

Digital

Character Binary Code

D 100 0100
i 110 1001
g 110 0111
i 110 1001
t 111 0100
a 110 0001
l 110 1100

c3c2c1c0

c6c5c4



Character Codes 
• Standard ASCII

◦ 7-bit character codes (0 – 127)

• Extended ASCII
◦ 8-bit character codes (0 – 255)

• Unicode
◦ 16-bit character codes (0 – 65,535)

• Unicode standard represents a universal character set
◦ Defines codes for characters used in all major languages
◦ Used in Windows-XP: each character is encoded as 16 bits

• UTF-8: variable-length encoding used in HTML
◦ Encodes all Unicode characters
◦ Uses 1 byte for ASCII, but multiple bytes for other characters



Codes 



Floating Point



Floating Point Numbers
• N = M ´ rE (1.13)

◦ M (mantissa or significand) 
◦ Significant digits of N

◦ E (exponent or characteristic)
◦ An integer exponent

• N = ± (an-1 ... a0 .a-1 ... a-m)r
◦ Presented by: N = ± (.an-1 ... a-m)r ´ rn



Floating Point Numbers
• N = M ´ rE (1.13)

◦ M (mantissa or significand) 
◦ Significant digits of N

◦ E (exponent or characteristic)
◦ An integer exponent

•M 
◦ Usually represented in sign magnitude 
◦ M = (SM.an-1 ... a-m)rsm (1.14)
◦ (.an-1 ... a-m)r represents the magnitude
◦ M  = (0: positive, 1: negative) (1.15)( ) (. ... )- ´ - -1 1

S
n m r

M a a



Floating Point Numbers
• N = M ´ rE (1.13)

◦ M (mantissa or significand) 
◦ Significant digits of N

◦ E (exponent or characteristic)
◦ An integer exponent

• M = (SM.an-1 ... a-m)rsm =                                                                 (1.14), (1.15)
• E 

◦ -2e-1 £     E         £ 2e-1

◦ Usually coded in excess-K two’s complement. 
◦ K : called bias

◦ Usually selected to be 2e-1 (e is the number of bits).
◦ Biased E is:

◦ 0   £ E  + 2e-1 £ 2e

◦ Excess-K form of E is written as              (1.16)
◦ E = (be-1, be-2 ... b0)excess-K
◦ be-1 is the sign bit.

( ) (. ... )- ´ - -1 1
S

n m r
M a a



Floating Point Numbers
• N = M ´ rE (1.13)

◦ M (mantissa or significand) 
◦ Significant digits of N

◦ E (exponent or characteristic)
◦ An integer exponent

•M = (SM.an-1 ... a-m)rsm =                                                                 (1.14), (1.15)

• E = (be-1, be-2 ... b0)excess-K (1.16) 

• Combining Eqs. (1.14) and (1.16), we have
◦ N = (SMbe-1be-2 ... b0an-1 ... a-m)r (1.17)

◦ N =            (1.18)

• Number 0 is represented by an all-zero word.

( ) (. ... )- ´ - -1 1
S

n m r
M a a

( ) (. ... ) ( ... )- ´ ´- -
-- -

-

1 1
21 2 0

1S
n m r

b b bM e e
e

a a r



Floating Point Numbers 
(cont’d)
•Multiple representations of a given number:

◦ N = M ´ rE (1.19)
◦ = (M ÷ r) ´ rE+1 (1.20)
◦ = (M ´ r) ´ rE-1 (1.21)

• Example: M = +(1101.0101)2
◦ M = +(1101.0101)2

= (0.11010101)2 ´ 24

= (0.011010101)2 ´ 25

= (0.0011010101)2 ´ 26

…



Floating Point Numbers 
(cont’d)
• Normalization

◦ A unique representation
◦ Mantissa has a nonzero value in its MSD position.
◦ Example:

◦ M = +(1101.0101)2

◦ Normal representation: (0.11010101)2 ´ 24



Floating Point Numbers 
(cont’d)
• Floating-point number formats

◦ Typical single-precision format
◦ N = (SMbe-1be-2 ... b0an-1 ... a-m)r

◦ Typical extended-precision format

S M Exponent E Mantissa M

Sign of mantissa

S M Exponent E Mantissa M (most significant part)

Mantissa M (least significant part)

( ) (. ... ) ( ... )- ´ ´- -
-- -

-

1 1
21 2 0

1S
n m r

b b bM e e
e

a a r



Floating Point Numbers 
(cont’d)
•N = (101101.101)2

• Assumption
◦ Normalized sign magnitude fraction is used for M
◦ Excess-16 two’s complement is used for E.



Floating Point Numbers 
(cont’d)
•N = (101101.101)2

◦ N  = (101101.101)2 = (0.101101101)2 ´ 26

◦ M = +(0.1011011010)2 = (0.1011011010)2sm

◦ E = +(6)10 = +(0110)2 = (00110)2cns

◦ Add the bias 16 = (10000)2 to E
◦ E = 00110 + 10000 = 10110
◦ E = (1, 0110)excess-16

◦ Combining M and E
N = (0, 10110, 1011011010)fp



Floating Point Numbers 
(cont’d)



IEEE 754



Error 
Correction/Detection 
Codes



Error
• Error

◦ An incorrect value in one or more bits

• Single error
◦ An incorrect value in only one bit

•Multiple error
◦ One or more bits are incorrect

• Error sources 
◦ Hardware failures
◦ External interference (noise)
◦ Other unwanted events.



Error Detection/Correction 
Codes
• Error detection/correction code 

◦ Encode information in such a way that a particular class of errors can be 
detected and/or corrected.

• Let I and J be n-bit binary information words
◦ w(I): number of 1’s in I (weight)
◦ d(I, J): number of bit positions in which I and J differ (distance)

• Example: I = (01101100) and J = (11000100)
◦ w(I) = 4 and w(J) = 3
◦ d(I, J) = 3



Error Detection/Correction 
Codes (cont’d)
•Minimum distance, dmin, of a code C

◦ For any two code words I and J in C,  d(I, J) ³ dmin

◦ Determines the properties of error correction and detection of a code



Error Detection/Correction 
Codes (cont’d)
• Relationship between dmin of code words and detection/correction 
ability

◦ A code provides t error correction
◦ Plus s error detection of s additional errors if and only if.

◦ 2t + s + 1 £ dmin (1.25)
Error word

Valid code word

(d) DEC, (SEC and 3ED), or 4ED

dmin = 5

(c) (SEC and DED) or TED

dmin = 4

(b) SEC or DED

dmin = 3

(a) SED

dmin = 2



Error Detection/Correction 
Codes (cont’d)
• Example 

◦ Single-error detection (SED): s = 1, t = 0, dmin = 2.
◦ Single-error correction (SEC): s = 0, t = 1, dmin = 3.
◦ Single-error correction and double-error detection (SEC/DED)

◦ s = t = 1, dmin = 4.
Error word

Valid code word

(d) DEC, (SEC and 3ED), or 4ED

dmin = 5

(c) (SEC and DED) or TED

dmin = 4

(b) SEC or DED

dmin = 3

(a) SED

dmin = 2



Error Detection/Correction 
Codes (cont’d)
• Simple Parity code

• Two-out-of-Five code

• Hamming code



Parity
• Simple Parity Code

◦ Concatenate (|) a parity bit, P, to each code word of C.
◦ Odd-parity code: w(P|C) is odd.
◦ Even-parity code: w(P|C) is even.

P

Parity bit

Information bits



Parity (cont’d)
• Sample

◦ Parity coding on magnetic tape:

01011000

Parity track

0
1
0
1
1
0
0
0
1

Information
tracks



Parity (cont’d)
• Produce odd parity code for ASCII code of character 0,X,=, BEL 

Character ASCII Code Odd-parity Code
0 0110000 10110000
X 1011000 01011000
= 0111100 1111100

BEL 0000111 00000111



Parity (cont’d)
• Produce odd parity code for ASCII code of character 0,X,=, BEL 

Character ASCII Code Odd-parity Code
0 0110000 10110000
X 1011000 01011000
= 0111100 1111100

BEL 0000111 00000111



Parity (cont’d)
• Error detection

◦ Check whether a code word has the correct parity

• Does parity have error detection ability?



Parity (cont’d)
• Error detection

◦ Check whether a code word has the correct parity

• Does parity have error detection ability?
◦ Yes,
◦ Single-error detection code (dmin = 2).



Two-out-of-Five Code
• Two-out-of-Five code

◦ Each code word has exactly two 1’s and three 0’s.

• Error detection
◦ Counting the number of ones
◦ If number of ones is not exactly equal to 2 

◦ è error
◦ Detects single and multiple errors in adjacent 

bits.

Digit Two-out-of-Five Code
0 00011
1 00101
2 01001
3 10001
4 00110
5 01010
6 10010
7 01100
8 10100
9 11000



Hamming Codes 
• Richard Hamming, 1950

• An extension of simple parity codes with multiple parity or check bits 

• Each check bit
◦ Is defined over (or covers) a subset of the information bits.

• Subsets overlap
◦ Each information bit is in at least two subsets.

• Error detection/correction ability
◦ Number of check bits
◦ How check bits are defined 
◦ dmin : weight of the minimum-weight nonzero code word.



Hamming Codes (cont’d) 
• Hamming Code 1 (Table 1.14)

◦ A code word consists of 4 information bits and 3 check bits: 
c = (i3 i2 i1 i0 c2 c1 c0) 

◦ Each check bit covers:
c2: i3, i2, i1
c1: i3, i2, i0
c0: i3, i1, i0

◦ dmin = 3
◦ Single error correction code.



Hamming Codes (cont’d) 
•m =8

• r?



Sample 1
• Send this data in haming code

• 10101001 



Sample 1 (cont’d)
• Find r?



Sample 1 (cont’d)
• Determine Pi?



Sample 1 (cont’d)

• P1 = xor (3,5,7,9,11)   =  xor (1,0,0,1,0)  = 0

• P2 = xor (3,6,7,10,11) =  xor (1,1,0,0,0)  = 0

• P4 = xor (5,6,7,12)      =  xor (0,1,0,1)      = 0

• P8 = xor (9,10,11,12) =  xor (1,0,0,1)       = 0

0 0 0 0

• Determine Pi?



Sample 1 (cont’d)

• C1 = xor (1,3,5,7,9,11)   =  xor (0,1,0,0,1,0)  = 0

• C2 = xor (2,3,6,7,10,11) =  xor (0,1,1,0,0,0)  = 0

• C4 = xor (4,5,6,7,12)      =  xor (0,0,1,0,1)      = 0

• C8 = xor (8,9,10,11,12) =  xor (0,1,0,0,1)       = 0

•Destination

0 0 0 0



Sample 1 (cont’d)

• C1 = xor (1,3,5,7,9,11)   =  xor (0,0,0,0,1,0)  = 1

• C2 = xor (2,3,6,7,10,11) =  xor (0,0,1,0,0,0)  = 1

• C4 = xor (4,5,6,7,12)      =  xor (0,0,1,0,1)      = 0

• C8 = xor (8,9,10,11,12) =  xor (0,1,0,0,1)       = 0

•Destination

0 0 0 00



Thank You 
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