

Iran University of Science & Technology

IUST

Digital Logic Design

Hajar Falahati

Department of Computer Engineering IRAN University of Science and Technology

hfalahati@iust.ac.ir

How to Find Equivalent States?

- Inspection
- Partitioning
- Implication Tables

Outline

State Reduction in Incompletely Specified Circuits

- State Compatibility
- Merger Diagrams
- Minimization Procedure

Simplification + Don't Cares!

Simplifications + d

Next states and/or outputs are not specified for all states

How to optimize these sequential circuits?

Sample 1

Minimize the following incompletely specified circuit

Minimizing Sample1

- The 4 don't cares can be assigned in any way that we choose
- Once don't cares are specified, the table is converted to completely specified table
- Next, the state reductions already we discussed can be applied here.
- Suppose we assign don't cares in a such way that A becomes equivalent to B and E equivalent to F.

	x	C
	0	1
A	B/—	E/0
В	B/1	<i>E/</i> —
С	F/0	C/0
D	B/1	A/1
E	D/0	<i>C/</i>
F	D/—	C/1

The reduced state table:
$$\begin{array}{c|c} 0 & 1 \\ A' & A'/1 & D'/0 \\ B' & D'/0 & B'/0 \\ C' & A'/1 & A'/1 \\ D' & C'/0 & B'/1 \end{array}$$

E/0

E/—

C/0

C/___ C/1

х

B/1 = A/1

0

B/—

B/1

F/0

D/0

Minimizing Sample 1 (cont'd)

A better assigning of the don't cares ۲ Don't cares of states A and E are assigned zeros and don't A • cares of B and F are assigned ones B CA, C and E become equivalent D B, D and F become equivalent ٠ Ex 0 $\begin{array}{rrr}
 B'/0 & A'/0 \\
 B'/1 & A'/1
\end{array}$ The reduced state table: B

The optimum simplification for don't cares is not obvious and simple and we should look for a solution

State Compatibility

Applicable Input Sequence

- Applicable input sequences to an state S_i:
 - When the circuit is in state S_i and the input sequence is applied, all next states are specified except possibly the last element of nextstate sequence.
- Example:

0111 is applicable to state A1111 is applicable to state A11111 is NOT applicable to state A

State Compatibility

- Compatible states:
 - Two states S_i and S_j are compatible if for each input sequence applicable to both states the same output sequence will be produced, when the outputs are specified.

• Compatible states:

- Two states S_i and S_j are compatible if and only if the following conditions are satisfied for any possible input I_p
 - Outputs produced by S_i and S_i are the same, when both are specified
 - Next states S_k and S_l are compatible, when both are specified

State Compatibility: Sample 2

Determine state compatibility in the following state table

Input:		1		1		1		1	
State:	A		E		C		C		С
Output:		0				0		0	
State:	С		С		С		C		С
Output:		0		0		0	i i i i i i i i i i i i i i i i i i i	0	

- States A and C are compatible
- States A and E are compatible
- States C and E are compatible
- Finally ACE are maximal compatible

Compatibility Relations

- Compatibility relation:
 - Let **R** be a relation on a set **S**
 - **R** is a compatibility relation on **S** if and only if it is reflexive and symmetric
 - A compatibility relation on a set partitions the set into compatibility classes
 - They are typically not disjoint.
- Example:
 - $\circ S = \{A, B, C, D, E\}$
 - $R = \{A,A\}, (B,B), (C,C), (D,D), (E,E), (A,B), (B,A), (A,C), (C,A), (A,D), (D,A), (A,E), (E,A), (B,D), (D,B), (C,D), (D,C), (C,E), (E,C) \}$
 - Compatibility classes are (*AB*)(*AC*)(*AD*)(*AE*)(*BD*)(*CD*)(*CE*)(*ABD*)(*ACD*)(*ACE*)
 - Incompatibility classes are (BC)(BE)(DE)
- Compatible pairs may be found using implication tables
- Maximal compatibles may be found using merger diagrams

Compatible Classes: Sample 3

Determine the **compatible classes** for the following state table

	x		
	0	1	
A	A/	C/1	
В	<i>B/-</i>	A/	
С	G/	<i>E</i> /0	
D	<i>C/</i> 1	C/	
E	A/1	C/	
F	D/	A/-	
G	G/	G/-	
Н	<i>H/</i> –	D/-	

Compatible Classes: Sample 3^{*}

Compatible Vs. Equivalence States

- What are the differences between compatibility in incompletely specified circuits and equivalence in completely specified circuits?
 - Transitive relation is hold in the completely specified circuits
 - Transitive relation does not work with the incompletely specified circuits
- Completely specified circuits:
 - If A is equivalent with B and B is equivalent with C we can conclude A is equivalent with C. → A and B and C are equivalence
- Incompletely specified circuits, there is no such guarantee
 - To have a maximal compatibility for example (BCG) we should have all pairs;
 i.e., (B,C) and (C,G) and (B,G)

Incompatibility Classes: Sample 4

Determine the incompatibility classes for the following state table

Incompatibility Classes: Sample 4 (cont'd)

Merger Diagram

State Compatibility & Implication Table

- Compatible states
- Maximal compatible
- Incompatible classes
- Tedious procedure
- How about considering another tool?
 - Merger Diagram, a graphical method!

Merger Diagram Construction

- Shows states by dots on a circle
 - Visually noting those sets in which every state is connected to every other state.
 - The maximal sets form regular graphical patterns.
- Find Maximal compatible
 - Connects each related (compatible) pairs of states
- Find incompatible classes
 - Connects each related (incompatible) pairs of states

Samples of Maximal Compatible Sets

 \boldsymbol{E}

Merger Diagram Rules

• Let's define some **rules** to extract maximal sets from a merger diagram

• Rule 1:

- Make each maximal set as large as possible
- Rule 2:
 - Each state must be interconnected with every other state in the maximal set
- Rule 3:
 - Each related pair of states must appear in at least one maximal set

Sample 5

- Draw the merger diagram
- Find maximal compatible class
- Find maximal incompatible class

	X		
	0	1	
A	A/	C/1	
В	<i>B/-</i>	A/	
С	G/	<i>E/</i> 0	
D	<i>C/</i> 1	C/	
E	A/1	C/	
F	D/	<i>A/</i> –	
G	G/	<i>G</i> /–	
Η	H/	D/-	

Sample 5: Implication Table

IUST

IUST

IUST

IUST

Minimization Procedure

Minimization Procedure

- Selecting a set of compatible classes
- Each class in the set corresponds to a state in the reduced state table
- Finiah!

How to Find the a Set of Compatible Classes

- A set of compatible classes **must** meet **these three conditions**
 - **Completeness:** Union of all the sets **must** contain all states of the machine
 - Consistency: Chosen set of classes must be closed:
 - Implied next states of each class must be contained by some other classes in the set
 - Minimality: Smallest number of classes that meet the above two conditions

The procedure to find compatible classes that meet the above three conditions is a try and error technique.

To handle this, bound the number of states k required in the realization of the minimal state circuit.

0

Is this Procedure Effective?

- Finding compatible classes procedure that meet the three conditions is a **try and error** technique.
- To handle this, **bound the number of states k** required in the realization of the minimal state circuit.

Bounding Minimization Procedure

- Upper bound, U, of number of states in the minimal circuit
 - o U = minimum{ NSMC, NSOC}
 - NSMC: Number of Sets of Maximal Compatible
 - NSOC: Number of States of Original Circuit
 - We do not need more states in the minimal circuit than the number of states in the original circuit!
- Lower bound, L, of number of states in the minimal circuit
 - L = maximum{ NSMI₁, NSMI₂, ..., NSMI_i, ...}
 - NSML_i: Number of Ntates in the i_{th} group of the sets of Maximal Incompatibles of the original circuit
 - If there are two states in the original circuit that are incompatible, the minimal circuit will have to have at least two states in order to distinguish the incompatible ones.

State Reduction Algorithms

State Reduction Algorithm

- Step 1: Find the maximal compatible classes using the implication table and merger diagram
- Step 2: Find the maximal incompatible classes
- Step 3: Find the **bounds** on the number of required states: U and L
- Step 4: Find a set of compatible classes that satisfy completeness, consistency, and minimality, by trial and error
- Step 5: Produce the minimal State table (it may still contain unspecified next states and outputs)

Sample 6

Find a **reduced state table** for the following state table.

	x		
	0	1	
A	A/	C/1	
В	<i>B/-</i>	A/	
С	G/	<i>E</i> /0	
D	C/1	C/	
E	A/1	C/-	
F	D/	A/-	
G	G/	G/-	
Η	<i>H</i> /–	D/-	

Sample 6: State Reduction Algorithm

CFG

Sample 6: Closure Table

- Closure Table
 - Treating the maximal compatibles as states
 - Finding their sets for next states

Maximal compatible classes	•	Maximal	Compatible	Classes
----------------------------	---	---------	------------	---------

- AEGH
- BCG
- CDG
- CEG
- CFG

	X		
	0	1	
(AEGH)	AGH	CDG	
(BCG)	BG	AEG	
(CDG)	CG	CEG	
(CFG)	DG	AEG	
(CEG)	AG	CEG	

Sample 6: Upper Bound

- Finding the upper bound (U)
 - NSMC: Number of Sets of Maximal Compatible
 - 5
 - NSOC: Number of States of Original Circuit
 - 8
 - $U = min\{5,8\} = 5$

Maximal Compatible Classes

- AEGH
- BCG
- CDG
- CEG
- CFG

Sample 6: Lower Bound

- •Finding the Lower bound (L)
 - NSML_i: Number of States in the i_{th} group of the sets of Maximal Incompatibles
 - Set of maximal incompatibles is
 - (ABDF)(BDEF)(BDFH)(AC)(CH)
 - L = max{4, 4, 4, 2, 2} = 4

Maximal Incompatible Classes

- ABDF
- BDEF
- BDFH
- AC
- CH

Sample 6: Bounding

- #states in the reduction table is
 - $\circ \ L \leq K \leq U$
 - $\circ 4 \le K \le 5$
- There are two options
 - K = 4
 - K = 5
- Which one works?

Sample 6: Closure Table (K=5)

Sample 6: Reduce Table (K=4)

- No way to reduce states
- Four states of closure table should satisfies two conditions:
 - Completeness
 - Consistency
- A trial and error procedure shows that it is impossible for four states

Sample 6:

• Find the reduced table for the following state table

Step 1: Find Maximal Compatible Set

Implication table

Step 1: Find Maximal Compatible Set (cont'd)

- Maximum Compatible Set
 - (ABD)
 - (ACD)
 - (ACE)

Step 2: Find Incompatible Set

- Maximum Incompatible Set
 - (BC)
 - (BE)
 - (DE)
 - X

Step 3: Calculate Bounds

- Finding the upper bound (U)
 - NSMC: Number of Sets of Maximal Compatible
 - 3
 - NSOC: Number of States of Original Circuit
 - 5
 - U = min{3,5} = 3
- •Finding the Lower bound (L)
 - NSML_i: Number of States in the i_{th} group of the sets of Maximal Incompatibles
 - Set of maximal incompatibles is
 - (BC)(BE)(DE)
 - L = max{2, 2, 2} = 2
- $2 \le k \le 3$

• k = 2

.X

Step 5: Reduce the State Table

- k = 2
- Select the maximal compatibles (ABD) and (ACE)
 - Completeness: Covers all states of the original circuit
 - Consistency: Chosen set is close
 - Implied next states of each class must be contained by some other classes in the set
- A' = (ABD) and B' = (ACE)

Thank You

