
Digital Logic
Design

Hajar Falahati

Department of Computer Engineering
IRAN University of Science and Technology

hfalahati@iust.ac.ir

mailto:hfalahati@ipm.ir

Combinational Logics +
Memory
• Output of some logics changes by

◦ Sequence of inputs
◦ Time of applying inputs

• => They have memory

• They contain feedback lines

• State
◦ Produced by previous inputs
◦ Information stored in a memory

x1 z1
xn zm

(a)

y1 Yryr Y1

Memory

Combinational
logic

Combinational
logic

(b)

x1 z1
xn zm

Current Inputs

State Next State

Output

Digital Logic Design: Modeling 2

Flip Flops
T

! " # $#
0 0 # $#
0 1 1 0

1 0 0 1

1 1 Invalid

J K Q (Q
0 0 Q (Q
0 1 0 1

1 0 1 0

1 1 (Q Q

Hold the value

Set the value
Reset the value

Toggle the value

) Q (Q
0 0 1
1 1 0

+ Q (Q
0 Q (Q
1 (Q Q

Hold the value
Toggle the value

Delay FF

Hold the value
Set the value
Reset the value
Invalid

Digital Logic Design: Modeling 3

Outline
•Modeling of Synchronous Sequential Circuits

• Analysis of Synchronous Sequential Circuits

• Synthesis of Synchronous Sequential Circuits

Digital Logic Design: Modeling 4

Analysis

Analysis
• Determining the functional relation between

◦ Outputs
◦ E.g., y(t)

◦ Internal states (content of FFs)
◦ E.g., A(t), B(t)

• Determining the next state
◦ Internal states

◦ E.g., A(t+1), B(t+1)

• State transition
◦ Moving from one memory state to another one
◦ Under the control of a set of inputs and at a time determined by an external

clock
◦ Next value of states only determine at the clock transition

x1 z1
xn zm

(a)

y1 Yryr Y1

Memory

Combinational
logic

Combinational
logic

(b)

x1 z1
xn zm

Current Inputs

State Next State

Output

Digital Logic Design: Modeling 6

Analysis: Transition Table

D Q

Q

CLK

D Q

Q

A

B

y

x

Present State Input Next State Output
! " # ! " $
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0

0

Digital Logic Design: Modeling 7

Analysis: Transition Table

D Q

Q

CLK

D Q

Q

A

B

y

x

Present State Input Next State Output
! " # ! " $
0 0 0 0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0

0

0

0

0

0

0

0
0

0

1
0

00

0/0

Digital Logic Design: Modeling 8

Analysis: Transition Table

D Q

Q

CLK

D Q

Q

A

B

y

x

! " = $("). ((" + * ")

* " + 1 = ,- = (" . $(")
(" + 1 = ,. = (" . $(") + * " . $ "

Present State Input Next State Output
(* $ (* !
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

Digital Logic Design: Modeling 9

Analysis: State Diagram
Present State Input Next State Output
! " # ! " $
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

00

01

10

11

0/0

1/0 0/1

1/0

0/1
1/0

0/1 1/0

Digital Logic Design: Modeling 10

Analysis Sample1:
Transition Table

! " = $ " . & "

$ " + 1 =) = $("). &(") + $ " . &(")

Analysis Sample1:
Transition Table

! " = $ " . & "
$ " + 1 =) = $("). &(") + $ " . &(")

Present State Input Next State Output
$ & $!
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Analysis Sample1:
State Diagram

! " = $ " . & "
$ " + 1 =) = $("). &(") + $ " . &(")Present State Input Next State Output

$ & $!
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

0 1

0/0 1/0 0/0

1/1

Analysis Sample1:
Timing Diagram

! " = $ " . & "
$ " + 1 =) = $("). &(") + $ " . &(")

0 1

0/0 1/0 0/0

1/1

Models

How to Implement Real
Designs?

16Digital System Design: Modeling

• Identify the problem

•Model the problem

Modeling Types
• Finite State Machine

◦ FSM

• Algorithmic State Machine
◦ ASM

Digital System Design: Modeling

Finite State Machine (FSM)
• A system that visits a finite number of logically distinct states

• A useful abstraction for sequential circuits with centralized states of
operation

• At each clock edge, combinational logic computes
◦ Outputs and next state as a function of inputs and present state

Digital System Design: Modeling

FSM Representation
• State diagram & state table

◦ Simple digital systems
◦ A few number of inputs and outputs

State Diagram

Digital System Design: Modeling

• A set of states
◦ Nodes in a graph

• A set of inputs and outputs
◦ Edges in a graph

• A set of state transition function
◦ Edges in a graph

• An output function

FSM Types

Moore FSM

Mealy FSM

Digital System Design: Modeling

S’= g (S, X0…Xn)

Moore and Mealy Machines

22

clock

States
(Memory
)Input

s
Next
State
s

Presen
t
States

Outputs

Comb. Circuit Comb. Circuit

Mealy

Digital System Design: FSM Modeling

Mealy FSM:
State Diagram & State Table

Moore and Mealy Machines

24

clock

States
(Memory
)Input

s
Next
State
s

Presen
t
States

Outputs

Comb. Circuit Comb. Circuit

Moore

Digital System Design: FSM Modeling

Moore FSM:
State Diagram & State Table

Vending Machine
• The computer department need a new soda machine

•We decided to ask computer students to design a controller for the
new vending machine

Digital System Design: Modeling

15c

15c

D N

Vending Machine:
Characteristics
• Characteristics

◦ All selections cost 15 Rial
◦ Machine does not return changes!

• Input
◦ D: dim inserted (10 Rial!)
◦ F: five inserted (5 Rial!)

• Output
◦ DC: dispense can

15c

15c

D N

Digital System Design: Modeling

Vending Machine: FSM
• Insert coin

◦ Default state
◦ No money has been inserted

• 5 Rials
◦ A 5 Rial coin has been inserted

Digital System Design: Modeling

Insert coin
DC = 0

•10 Rials
◦ A 10 Rial coin has been inserted

• 15 Rials
◦ Total money has been reached to 15

Rial
◦ Done!

No coin No coin No coin

F F F,D

D

No coin

D

5 Rials
DC = 0

10 Rials
DC = 0

15 Rials
DC = 1

Pattern Recognition
• Recognize a specific bit pattern (110) in a bitstream

◦ Mealy
◦ Moore

Pattern Recognition (110):
Mealy
• State S0

◦ We have not recognized any useful pattern

• State S1
◦ We have recognized the pattern ’1’

• State S2:
◦ We have recognized the pattern ’11’
◦ Output: recognizing an input bit ’0’ in state S2

S1 S2S0

0/0
1/0

0/0

1/0

1/0

0/1

30Digital System Design: FSM Modeling

Pattern Recognition (110):
Moore
• State S0

◦ We have not recognized any useful pattern

• State S1
◦ We have recognized the pattern ’1’

• State S2:
◦ We have recognized the pattern ’11’

• State S3:
◦ We have recognized the pattern ’110’
◦ Output becomes 1

S1/0
S2/0

S0/0

0
1

0

1

1

0

S3/1

1

0

31Digital System Design: FSM Modeling

Algorithmic State Machine
(ASM)
• A systematic way to design complex digital systems

◦ Complex digital systems
◦ Large number of inputs and outputs

• Describes the sequence of events

• Describes timing relationship between the states

• Behavioral model

• Basic Idea
◦ Flowchart

Look for first 1

Complement
remaining bits

x

z = 1

z = 0
0

1

0 1

z = 0

x

z = 1

Digital System Design: Modeling

ASM chart Elements
• ASM chart elements

◦ State box
◦ Decision box
◦ Conditional box

Decision BoxConditional BoxState Box

Digital System Design: Modeling

State Box
• Represents the state of the system

• Register Transfers

• Takes one cycle to be executed
◦ R1 <- R2 + R3

State Name

State Assignment

Digital System Design: Modeling

Output List
Or

Register Operation

T3 011

R1 ß R2 + R3
Start

Conditional Box
• Register Transfers

• Contain conditional output list
◦ Depends on both the state of the system and the inputs
◦ A.k.a., mealy output
◦ A condition output must follow a decision box

• Takes one cycle to be executed
◦ R1 <- R2 + R3

Start

E

1

0

010

R ß 0

001T1

T2

F ß E

Digital System Design: Modeling

Register Operation
or

Output

Decision Box
• Binary expressions

◦ ~R1[7]

Exit path Exit path

0 1

Digital System Design: Modeling

Condition

ASM Block
• Represents what happens in the system during one clock cycle

• Includes
◦ Only one state box
◦ All other boxes (decision and conditional boxes)

◦ Connected to the exit path of the state box
A ß A+1

E 10

100

R ß 0

001T1

T4

F ß E

F 10

T3T2 011010

Digital System Design: Modeling

Sample Design 1
• Design a control unit for a serial 2’s complement

x zSerial 2’s
complement

0
0
1

x z

0
0
1

1 0

0
1
2
3

t

Digital System Design: Modeling

Sample Design 1: Modeling

S0 S1

0/0

1/1

0/
1 1/0

Digital System Design: Modeling

Look for first 1

Complement
remaining bits

x

z = 1

z = 0
0

1

0 1x

z = 1 z = 0

Sample Design 1: Excitation
Table

S0 S1

0/0

1/1

0/
1 1/0 State

A(0)
A

B(1)
B

Input
(x)
0
1
0
1

Next
State

A
B
B
B

Output
(z)
0
1
1
0

D

0
1
1
1

z = Ax+Bx’

D=Ax+B

Digital System Design: Modeling

Sample Design 1: Block
Diagram

Digital System Design: Modeling 41

!

Control Unit

"0
"1 DataPath %&'(

Sample Design 1: Design

S0 S1

0/0

1/1

0/
1 1/0

State

A(0)
A

B(1)
B

Input
(x)
0
1
0
1

Next
State

A
B
B
B

Output
(z)
0
1
1
0

D

0
1
1
1

Digital System Design: Modeling

z = Ax+Bx’
D = Ax+Bb

a

b
a

b
a

b
a

b
a

Symbol set 1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR

a

Å b

Symbol set 2
(ANSI/IEEE Standard 91-1984)

&
b
a

¹
1

b
a

b
a

&
b
a

¹
1

b
a

= 1
b
a

1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR Å b

b
a

b
a

b
a

b
a

b
a

Symbol set 1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR

a

Å b

Symbol set 2
(ANSI/IEEE Standard 91-1984)

&
b
a

¹
1

b
a

b
a

&
b
a

¹
1

b
a

= 1
b
a

1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR Å b

!

b
a

b
a

b
a

b
a

b
a

Symbol set 1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR

a

Å b

Symbol set 2
(ANSI/IEEE Standard 91-1984)

&
b
a

¹
1

b
a

b
a

&
b
a

¹
1

b
a

= 1
b
a

1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR Å b

ba ba ba ba ba Sy
m

bo
l s

et
1

f(a
, b

) =
 a

b

f(a
, b

) =
 a

 +
 b

f(a
) =

 a

f(a
, b

) =
 a

b

f(a
, b

) =
 a

f(a
, b

) =
 a

 +
 b

AN
D O
R

NO
T

NA
ND NO
R

EX
CL
US
IV
E

O
R

a

Å
b

Sy
m

bo
l s

et
2

(A
NS

I/I
EE

E
St

an
da

rd
 9

1-
19

84
)

&
ba

¹ 1
ba ba

&
ba

¹ 1
ba

=
1

ba

1

f(a
, b

) =
 a

b

f(a
, b

) =
 a

 +
 b

f(a
) =

 a

f(a
, b

) =
 a

b

f(a
, b

) =
 a

f(a
, b

) =
 a

 +
 b

AN
D O
R

NO
T

NA
ND NO
R

EX
CL
US
IV
E

O
R

Å
b

"

#0

#1
&'(

b
a

b
a

b
a

b
a

b
a

Symbol set 1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR

a

Å b

Symbol set 2
(ANSI/IEEE Standard 91-1984)

&
b
a

¹
1

b
a

b
a

&
b
a

¹
1

b
a

= 1
b
a

1

f(a, b) = ab

f(a, b) = a + b

f(a) = a

f(a, b) = ab

f(a, b) = a

f(a, b) = a + b

AND

OR

NOT

NAND

NOR

EXCLUSIVE
OR Å b

Moore Vs. Mealy
• Mealy

◦ Has richer description
◦ Usually requires smaller number of states
◦ Smaller circuit area
◦ Computes outputs as soon as inputs change
◦ Not synchronized with the clock
◦ Responds one clock cycle sooner than equivalent Moore FSM
◦ May have glitch

• Moore
◦ Synchronize with clock
◦ No glitch, while in Mealy, you may have glitch

Thank You

Digital Logic Design: Modeling 44

