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Combinational Logics + 
Memory
• Output of some logics changes by 

◦ Sequence of inputs
◦ Time of applying inputs 

• => They have memory

• They contain feedback lines

• State
◦ Produced by previous inputs
◦ Information stored in a memory 
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Outline
•Modeling of Synchronous Sequential Circuits

• Analysis of Synchronous Sequential Circuits

• Synthesis of Synchronous Sequential Circuits

Digital Logic Design: Modeling 4



Analysis



Analysis
• Determining the functional relation between

◦ Outputs 
◦ E.g., y(t)

◦ Internal states (content of FFs)
◦ E.g., A(t), B(t)

• Determining the next state
◦ Internal states

◦ E.g., A(t+1), B(t+1)

• State transition 
◦ Moving from one memory state to another one
◦ Under the control of a set of inputs and at a time determined by an external 

clock
◦ Next value of  states only determine at the clock transition
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Analysis: Transition Table
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Analysis: Transition Table
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Analysis: Transition Table
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Analysis: State Diagram
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Analysis Sample1:
Transition Table
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Analysis Sample1:
Transition Table
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Analysis Sample1:
State Diagram
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Analysis Sample1:
Timing Diagram
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Models



How to Implement Real 
Designs?
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• Identify the problem

•Model the problem



Modeling Types
• Finite State Machine

◦ FSM

• Algorithmic State Machine
◦ ASM
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Finite State Machine (FSM) 
• A system that visits a finite number of logically distinct states

• A useful abstraction for sequential circuits with centralized states of 
operation

• At each clock edge, combinational logic computes
◦ Outputs and next state as a function of inputs and present state
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FSM Representation
• State diagram & state table

◦ Simple digital systems 
◦ A few number of inputs and outputs



State Diagram
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• A set of states
◦ Nodes in a graph

• A set of inputs and outputs
◦ Edges in a graph

• A set of state transition function
◦ Edges in a graph

• An output function



FSM Types

Moore FSM

Mealy FSM
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Moore and Mealy Machines
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Mealy FSM: 
State Diagram & State Table



Moore and Mealy Machines
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Moore FSM:
State Diagram & State Table



Vending Machine
• The computer department need a new soda machine 

•We decided to ask computer students to design a controller for the 
new vending machine

Digital System Design: Modeling
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Vending Machine: 
Characteristics
• Characteristics 

◦ All selections cost 15 Rial
◦ Machine does not return changes!

• Input
◦ D: dim inserted (10 Rial!)
◦ F: five inserted (5 Rial!)

• Output
◦ DC: dispense can
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Vending Machine: FSM
• Insert coin

◦ Default state
◦ No money has been inserted

• 5 Rials
◦ A 5 Rial coin has been inserted
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Insert coin
DC = 0

•10 Rials
◦ A 10 Rial coin has been inserted

• 15 Rials
◦ Total money has been reached to 15 

Rial
◦ Done!
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Pattern Recognition
• Recognize a specific bit pattern (110) in a bitstream 

◦ Mealy
◦ Moore



Pattern Recognition (110): 
Mealy
• State S0

◦ We have not recognized any useful pattern

• State S1
◦ We have recognized the pattern ’1’

• State S2: 
◦ We have recognized the pattern ’11’
◦ Output: recognizing an input bit ’0’ in state S2
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30Digital System Design: FSM Modeling



Pattern Recognition (110): 
Moore
• State S0

◦ We have not recognized any useful pattern

• State S1
◦ We have recognized the pattern ’1’

• State S2: 
◦ We have recognized the pattern ’11’

• State S3: 
◦ We have recognized the pattern ’110’
◦ Output becomes 1
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Algorithmic State Machine 
(ASM)
• A systematic way to design complex digital systems

◦ Complex digital systems 
◦ Large number of inputs and outputs

• Describes the sequence of events 

• Describes timing relationship between the states

• Behavioral model

• Basic Idea
◦ Flowchart
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ASM chart Elements
• ASM chart elements

◦ State box
◦ Decision box
◦ Conditional box

Decision BoxConditional BoxState Box
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State Box
• Represents the state of the system  

• Register Transfers

• Takes one cycle to be executed
◦ R1 <- R2 + R3

State Name

State Assignment
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Output List 
Or 

Register Operation

T3 011

R1 ß R2 + R3
Start



Conditional Box
• Register Transfers

• Contain conditional output list
◦ Depends on both the state of the system and the inputs
◦ A.k.a.,  mealy output
◦ A condition output must follow a decision box

• Takes one cycle to be executed
◦ R1 <- R2 + R3
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Output



Decision Box
• Binary expressions

◦ ~R1[7]

Exit path Exit path

0 1
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ASM Block
• Represents what happens in the system during one clock cycle 

• Includes 
◦ Only one state box
◦ All other boxes (decision and conditional boxes)

◦ Connected to the exit path of the state box
A ß A+1
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Sample Design 1
• Design a control unit for a  serial 2’s complement 

x zSerial 2’s 
complement

0
0
1

x z

0
0
1

1 0

0
1
2
3

t

Digital System Design: Modeling



Sample Design 1: Modeling
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Sample Design 1: Excitation 
Table
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Sample Design 1: Block 
Diagram
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Sample Design 1: Design
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z  = Ax+Bx’
D = Ax+Bb
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Moore Vs. Mealy
• Mealy

◦ Has richer description
◦ Usually requires smaller number of states
◦ Smaller circuit area
◦ Computes outputs as soon as inputs change
◦ Not synchronized with the clock
◦ Responds one clock cycle sooner than equivalent Moore FSM
◦ May have glitch

• Moore
◦ Synchronize with clock
◦ No glitch, while in Mealy, you may have glitch



Thank You 
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