
Digital Logic
Design

Hajar Falahati

Department of Computer Engineering
IRAN University of Science and Technology

hfalahati@iust.ac.ir

mailto:hfalahati@ipm.ir

Combinational Logics
• Always Current inputs produce the output
• Output is independent of

◦ Sequence of inputs
◦ Time of applying inputs

• => Combinational logics are memory less
◦ Memory-less circuits do not contain any feedback lines

x1 z1
xn zm

(a)

y1 Yryr Y1

Memory

Combinational
logic

Combinational
logic

(b)

x1 z1
xn zm

Outline
• Introduction to sequential logics

•Memory devices
◦ Latch
◦ Flip Flops (FF)

Digital Logic Design: Sequential 3

Sequential Logics

Traffic Signal Controller

165

The following specifications must be considered:

• The traffic signal for the main highway gets highest priority because cars are
continuously present on the main highway. Thus, the main highway signal
remains green by default.

• Occasionally, cars from the country road arrive at the traffic signal. The traffic

signal for the country road must turn green only long enough to let the cars on the
country road go.

• As soon as there are no cars on the country road, the country road traffic signal

turns yellow and then red and the traffic signal on the main highway turns green
again.

• There is a sensor to detect cars waiting on the country road. The sensor sends a

signal X as input to the controller. X = 1 if there are cars on the country road;
otherwise, X= 0.

• There are delays on transitions from S1 to S2, from S2 to S3, and from S4 to S0.

The delays must be controllable.

The state machine diagram and the state definitions for the traffic signal controller are
shown in Figure 7-1.

•What is the functionality of a traffic signal controller?

• Inputs
◦ Signal X

◦ Detect cars waiting on the country road
◦ X = 1 if there are cars on the country road; otherwise, X= 0

• Output
◦ Manages the traffic signals for both roads
◦ Gets highest priority to the main road

◦ The highway traffic signal becomes green
◦ If there is a car on the country road

◦ The country-road traffic signal becomes green

Traffic Signal Controller:
More Detail

165

The following specifications must be considered:

• The traffic signal for the main highway gets highest priority because cars are
continuously present on the main highway. Thus, the main highway signal
remains green by default.

• Occasionally, cars from the country road arrive at the traffic signal. The traffic

signal for the country road must turn green only long enough to let the cars on the
country road go.

• As soon as there are no cars on the country road, the country road traffic signal

turns yellow and then red and the traffic signal on the main highway turns green
again.

• There is a sensor to detect cars waiting on the country road. The sensor sends a

signal X as input to the controller. X = 1 if there are cars on the country road;
otherwise, X= 0.

• There are delays on transitions from S1 to S2, from S2 to S3, and from S4 to S0.

The delays must be controllable.

The state machine diagram and the state definitions for the traffic signal controller are
shown in Figure 7-1.

• Traffic Signal for main highway gets highest priority
◦ Cars are continuously present on the main highway
◦ Main highway signal remains green by default

• Traffic signal for the country road
◦ Must turn green only long enough to let the cars on the country road go
◦ As soon as there are no cars on the country road

◦ Country road traffic signal turns yellow and then red
◦ Traffic signal on the main highway turns green again

◦ There is a sensor to detect cars waiting on the country road
◦ Sends a signal X as input to the controller.
◦ X = 1 if there are cars on the country road; otherwise, X = 0.

Sample Circuit 1:
Traffic Signal Controller (cont’d)

Traffic Signal Controller

2010 DSD 12

Sample Design 2
• Design a control unit for a serial 2’s complement

x zSerial 2’s
complement

0
0
1

x z

0
0
1

1 0

0
1
2
3

t

Digital System Design: Modeling

Serial 2’s Complement
x zSerial 2’s

complement

Digital System Design: Modeling

S0 S1

0/0

1/1

0/
1 1/0

Look for first 1

Complement
remaining bits

x

z = 1

z = 0
0

1

0 1x

z = 1 z = 0

Sample Circuit 3
•What is the functionality of this circuit?

◦ Input =0
◦ Input =1

• Each line shows a pair (input, output)

1/1

Present
state

A C

B D

(a)

(b)

0 1

0/1

0/0

1/1

x/z

Input x

0/0
1/0 1/0

D/0
B/1
C/1
A/0

C/1
A/0
D/0
B/1

A
B
C
D

0/1

1/1

Present
state

A C

B D

(a)

(b)

0 1

0/1

0/0

1/1

x/z

Input x

0/0
1/0 1/0

D/0
B/1
C/1
A/0

C/1
A/0
D/0
B/1

A
B
C
D

0/1

Combinational Logics +
Memory
• Output of some logics changes by

◦ Sequence of inputs
◦ Time of applying inputs

• => They have memory

• They contain feedback lines

x1 z1
xn zm

(a)

y1 Yryr Y1

Memory

Combinational
logic

Combinational
logic

(b)

x1 z1
xn zm

State
• Produced by previous inputs
• Information stored in a memory

Present state
Input

(a) (b)

Input/output

Present state

Next state

y

x

Y/z

x/z

Next
state/output

y

Y

Sequential Logic
• Produce OUTPUTS by considering

◦ Current inputs
◦ Current states (state)

◦ Current outputs generated by previous inputs

• Next State outputs are inputs to storage elements

x1 z1
xn zm

(a)

y1 Yryr Y1

Memory

Combinational
logic

Combinational
logic

(b)

x1 z1
xn zm

State Next State

Current Inputs
Output

Memory Devices

Memory Unit
• An element which stores one bit data

• How to store one bit data?
◦ A system should have two stable states at least

• Stable state
◦ Systems stays in this state
◦ Does not need to any outside signal

• Sample
◦ Put a glass on the table

Back to Back Inverters
• Consider this circuit

•What is its functionality?
◦ Consider O2 as the output

g1

g2

o2 o1

Back to Back Inverters:
Functionality

g1

g2

o2 o1

0 1

Store 0

g1

g2

o2 o1

1 0

Store 1

Back to Back Inverters:
How to update?

g1

g2

o2 o1

1 0

Store 1

• How to update?
◦ Apply ‘1’

• How to write?
◦ We can not write

•Why?
◦ We can not change the output of a logic gate
◦ => Damage the circuit
◦ => Incorrect functionality

Apply ’1’

g1

g2

o2 o1

0 1

Store 0

Back to Back Inverters:
How to write?
• How to write?

◦ Insert two OR gate

g1

g2

OR2 OR1
x1

x0
!

"!

Back to Back Inverters + 2 OR Gate:
Functionality

0

• x0 = x1 =0

• !?

g1

g2

OR2 OR1
x1

x0
!

"!

0
g1

g2

!

"!

≣

Back to Back Inverters + 2 OR Gate:
Functionality (cont’d)

0

• x0 = 1

• x1 =0

• !?

g1

g2

OR2 OR1
x1

x0
!

"!

1
g1

g2

! = 1

"!

≣
1

0

1

1

• x0 = 0

• x1 =1

• !?

g1

g2

OR2 OR1
x1

x0
!

"!

0
g1

g2

! = 0

"!

≣

1

1

0

Back to Back Inverters + 2 OR Gate:
Functionality (cont’d)

• x1 x0
◦ 00 => Hold the value
◦ 10 => Write 0
◦ 01 => Write 1

• x0
◦ Set input (S)

• x1
◦ Reset input (R)

g1

g2

OR2 OR1
x1

x0
!

"!

Back to Back Inverters + 2 OR Gate:
Functionality: Summary

g1

g2

OR2 OR1
R

S
!

"!

g1

g2

OR2 OR1
R

S
!

"!

Back to Back Inverters + 2 NOR
Gate

NOR2

NOR1

R

S
!

"!

≣

• A circuit can store one bit data

• Two inputs
◦ R
◦ S

Set-Reset Latch (S-R Latch)

! " # $#
0 0 # $#
0 1 1 0
1 0 0 1
1 1 Invalid

Hold the value
Set the value
Reset the value
Invalid

NOR2

NOR1

R

S
#

$#

• !" = 11
◦ % = &% = 0
◦ Invalid input

S-R Latch: RS =11?

NOR2

NOR1

R

S
%

&%
1

1

0

0

• !" = 11 → !" = 00
◦ ' = ?
◦)' = ?

• !" = 00
◦ Hold the value!
◦ Does it hold the invalid value?

S-R Latch: !" = 11 → !" = 00?

NOR2

NOR1

R

S
'

)'
1

1

0

0
-> 0

-> 0

• !" = 11 → !" = 00
• There are two conditions

◦ !" = 11 → !" = 01 → !" = 00
◦ !" = 11 → !" = 10 → !" = 00

•Why?
◦ Race

• Race
◦ When two inputs change at the same time
◦ In reality, their values do not become updated at the same time

S-R Latch: !" = 11 → !" = 00?
(cont’d)

NOR2

NOR1

R

S
'

('
1

1

0

0
-> 0

-> 0

• !" = 11 → !" = 01 → !" = 00

NOR2

NOR1

R

S
'

('
1

1

0

0

S-R Latch: !" = 11 → !" = 00?
(cont’d)

• !" = 11 → !" = 01 → !" = 00

S-R Latch: !" = 11 → !" = 00?
(cont’d)

NOR2

NOR1

R

S
'

('
1

1

0

0

NOR2

NOR1

R

S
'

('
1

-> 1
0

-> 0

-> 1

-> 0

1 1

0

• !" = 11 → !" = 01 → !" = 00

S-R Latch: !" = 11 → !" = 00?
(cont’d)

NOR2

NOR1

R

S
'

('
1

->1
0

-> 0

-> 1

->0

1

0

NOR2

NOR1

R

S
'

('
1

->1
0

-> 0

-> 1

->0

1

0

-> 0

-> 0
-> 1

-> 0

• !" = 11 → !" = 10 → !" = 00

S-R Latch: !" = 11 → !" = 00?
(cont’d)

NOR2

NOR1

R

S
'

('
1

1

0

0

• !" = 11 → !" = 10 → !" = 00

S-R Latch: !" = 11 → !" = 00?
(cont’d)

NOR2

NOR1

R

S
'

('
1

1

0

0

NOR2

NOR1

R

S
'

('
1

-> 0
0

-> 1

-> 0

-> 1

1 1

0

• !" = 11 → !" = 10 → !" = 00

S-R Latch: !" = 11 → !" = 00?
(cont’d)

NOR2

NOR1

R

S
'

('
1

->0
0

-> 1

-> 0

->1

1

0

NOR2

NOR1

R

S
'

('
1

->0
0

-> 1

-> 0

->1

1

0

-> 0

-> 0
-> 0

-> 1

• !" = 11 → !" = 00
• !" = 11 → !" = 01 → !" = 00

◦ ! '() *ℎ, -./,
◦ =>0 10 = 00 → 0 10 = 10 → 0 10 = 10

• !" = 11 → !" = 10 → !" = 00
◦ S '() *ℎ, -./,
◦ =>0 10 = 00 → 0 10 = 01 → 0 10 = 01

• Critical race
◦ Affect the functionality
◦ Winner set the output

S-R Latch: Critical Race

S-R Latch: Race

RS = 00 RS = 01

RS = 10

No Race

No Race Race

• Is there any race?

• & '() *ℎ, -./,
◦ &0 = 01 → &0 = 11 → &0 = 10

• S '() *ℎ, -./,
◦ &0 = 01 → &0 = 00 → &0 = 10

?

??

R

S

2

32

•! "#$ %ℎ' ()*'
◦ !+ = 01 → !+ = 11 → !+ = 10
◦ =>0 10 = 10 → 0 10 = 00 → 0 10 = 01

• S "#$ %ℎ' ()*'
◦ !+ = 01 → !+ = 00 → !+ = 10
◦ =>0 10 = 10 → 0 10 = 10 → 0 10 = 01

• Non-critical race
◦ In both cases, final output is the same
◦ Winner set the output

S-R Latch: Non-Critical Race

S-R Latch: NAND
• Implement S-R lacth with NAND gates?

R

S

!

"!

NOR1

NOR2

NAND S-R Latch
• NOR 1

◦ ! + #$ = #! . $
• NOR 2

◦ ' + $ = ̅'. #$

(b)

(d)

QR = 0 R = 1

S = 1S = 0

Q

(a)

Q
R

R

S
S

QN1

N2

(c)

Q
R

S
Q

Q

Q

R

S

(e)

Q

Q

R

S

R

S

$

#$

NOR1

NOR2

NAND S-R Latch (cont’d)

(b)

(d)

QR = 0 R = 1

S = 1S = 0

Q

(a)

Q
R

R

S
S

QN1

N2

(c)

Q
R

S
Q

Q

Q

R

S

(e)

Q

Q

R

S

(b)

(d)

QR = 0 R = 1

S = 1S = 0

Q

(a)

Q
R

R

S
S

QN1

N2

(c)

Q
R

S
Q

Q

Q

R

S

(e)

Q

Q

R

S

S-R Latch: Timing Diagram 1

(a)

S

R

Q

Set Reset Illegal
inputs

Unknown values

Q

Set

(b)

S

R

Q

Set Reset Illegal
inputs

Unknown values

Q

Set

S-R Latch: Timing Diagram 2
(a)

S

R

Q

Set Reset Illegal
inputs

Unknown values

Q

Set

(b)

S

R

Q

Set Reset Illegal
inputs

Unknown values

Q

Set

S-R Latch: Propagation Delays

S

R

Q

tPLH
(S to Q)

tPLH
(N 2)

tPHL
(N 1)

tPHL
(R to Q)

tPHL
(N 2) tPLH

(N 1)

Q

S-R Latch: Characteristics

Q* = S + R¢Q

S R Q Q*

(a)

Excitation
inputs

Present
state

Next
state

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
0
1
1
´
´

No change

Reset

Set

Not allowed

Q
SR

0

00 01 11 10

R

Q

0 Ð 1

1 0 Ð 1

S

0

1

10

01

0d d0

(b)

SR

0 1

(c)

S R Q Q*

(a)

Excitation
inputs

Present
state

Next
state

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
0
1
1
´
´

No change

Reset

Set

Not allowed

Q
SR

0

00 01 11 10

R

Q

0 Ð 1

1 0 Ð 1

S

0

1

10

01

0d d0

(b)

SR

0 1

(c)

S-R Latch: Characteristics
(cont’d)

S R Q Q*

(a)

Excitation
inputs

Present
state

Next
state

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
0
1
1
´
´

No change

Reset

Set

Not allowed

Q
SR

0

00 01 11 10

R

Q

0 Ð 1

1 0 Ð 1

S

0

1

10

01

0d d0

(b)

SR

0 1

(c)

S R Q Q*

(a)

Excitation
inputs

Present
state

Next
state

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
0
1
1
´
´

No change

Reset

Set

Not allowed

Q
SR

0

00 01 11 10

R

Q

0 Ð 1

1 0 Ð 1

S

0

1

10

01

0d d0

(b)

SR

0 1

(c)

Clocked S-R Latch (CSR Latch)
• Change all the Latched at the same time

◦ Use a clock signal, CLK
◦ A latch is active when CLK is 1 or 0

• Clocked S-R

• Flip Flop

!"# $ % & '&
0 X X & '&
1 0 0 & '&
1 0 1 1 0
1 1 0 0 1
1 1 1 Invalid

Hold
Set
Reset

Invalid

Hold

S-R

LatchS

R

&

'&
()*

Clocked S-R Latch (cont’d)

R

S

!

"! Q
D

c

1 0

1 0

0 1

1 0

Q
D

c

1 0

1 0

0 1

1 0

g2

g1

#$% & ' ! "!
0 X X ! "!
1 0 0 ! "!
1 0 1 1 0
1 1 0 0 1
1 1 1 Invalid

Hold
Set
Reset

Invalid

Hold

()*

S-R

LatchS

R

!

"!
()*

Clocked S-R Latch (cont’d)

R

S

!

"! Q
D

c

1 0

1 0

0 1

1 0

Q
D

c

1 0

1 0

0 1

1 0

g2

g1

#$% & ' ! "!
0 X X ! "!
1 0 0 ! "!
1 0 1 1 0
1 1 0 0 1
1 1 1 Invalid

Hold
Set
Reset

Invalid

Hold

()*

S-R

LatchS

R

!

"!
()*

Clocked S-R
Flip Flop

S-R Flip Flop (S-R FF)

(a)
C* R

S

C

R

S

R

Q

Q

(b)
(c)

Q

Q

C*S

S

C

R

S

R

Q

Q

S

C

R

S

C

R

Q

Q

(d)

S-R Flip Flop (S-R FF):
characteristics

Excitation
inputs

 S R

Next
state
Q*

0
0
1
1
1
1
1
1
1
1

´
´
0
0
0
0
1
1
1
1

Enable
inputs

C

´
´
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
0
1
1
´
´

Hold

No change

Reset

Set

Not allowed

Present
state

Q

110

101

0dd, 10d 0dd, 1d0

(a) (b)

CSR

0 1

Q* = S. Clk + R¢. Q + Clk¢ . Q

• C is CLK

Thank You

Digital Logic Design: Sub & comp 51

