

Iran University of Science & Technology

IUST

Digital Logic Circuit Design

Hajar Falahati

Department of Computer Engineering IRAN University of Science and Technology

hfalahati@iust.ac.ir

Alithuaboutint

A Little About Me

• Hajar Falahati

- Assitant Professor @ Iran University of Science and Technology (IUST), since Sep. 2018.
- **Postdoc** @ Institute in Fundamental Science and Technology (IPM), Dec 2016 Sep 2018.
 - Supervised by Prof. Hamid Sarbazi-Azad, Prof. Pejman Lotfi-Kamran
- Research Visitor @ University of Southern California (USC), Apr 2015 Apr 2016.
 - Supervised by Prof. Masoud Pedram and Prof. Muralli Annavaram
- PhD @ Sharif University of Technology (SUT), Sep 20111 Oct 2016.
 - Supervised by Prof. Shaahin Hessabi
- Msc @ Sharif University of Technology (SUT), Sep 2009 Sep 2011
 - Supervised by Prof. Shaahin Hessabi
- BSc @ Isfahan University of Technology (IUT), Sep 2005 Sep 2009
 - Supervised by Prof. Kiarash Bazargan and Mr. Nikaean.

Alitta Little About Me

Research Area

- Hardware Accelerators
- Neural Networks
- GPU Architecture
- Processing-in-Memory
- Bioinformatics

Course Information

Digital Logic Circuit Design

Digital Logic Design: Intro

Course Objective

- Digital system concepts
 - Digital systems
 - Digital information

- Digital storage
 - Register
 - Memory

- Digital system modeling
 - Understand the system behavior

- Digital system design
 - Simple digital systems
 - Complex digital systems

Digital Logic Design: Intro

- Design and simulation tools
 - Proteus
 - ISE
 - Quartus

OBJECTIVES

Class Information

Class hour

- Sat & Mon: 08:00-10:00.
- Instructor
 - Hajar Falahati

Contact info

- 313 CE, **IUST**
- Office hour
 - Check my schedule on my office door

MI

Teaching Assistant

• TA team

- Sepehr Babapour
- Sana Shoeibi
- Zahra Hosseini
- Tohid Abedini
- Mahsa Meimari
- MirHosseing Seyed Nasiri

Class TA hour

Tuesday 12:00 – 13:00

References and Copyright Notice

DIGITAL LOGIC

& DESIGN

CIRCUIT ANALYSIS

- Digital Logic Circuit Analysis and Design, by Nelson, Nagle, Carroll and Irwin
- Digital Design, fifth edition, by Moris Mano
- Digital Design Lectures, from MIT, SUT, ETH, ..

With An Introduction to the Verilog HDL

M. MORRIS MANO | MICHAEL D. CILETTI

VICTOR P. NELSON H. TROY NAGLE J. DAVID IRWIN BILL D. CARROLL

Class Policy

- Attend the class on time
 - Sat & Mon: 08:00 AM ~ 10:00
 - Class -121
- Cell Phones off or on silent
- •Food no, Water yes!
- •Ask Questions anytime
 - Don't hesitate to ask even stupid questions!!!
- Pass me your feedback/thought
 - Anything related to the course

77

10

9

R

PI FASE

YOUR PHONE

Х

Ask Question

want your Feedback

Grading

- Final Exam: 30%
- Midterm Exam: 20%
- Quiz: 10%
 - Four *scheduled* quizzes
 - TA class quizzes
- Class attendance: 10%
 - Lecture class
 - TA class
- Assignments & Project: 30%
 - Bonus points for outstanding projects

Assignments

- Deadlines
 - Tight
 - 3 days late is allowed!
 - > 3 days → zero score
- Discussion is allowed
- Copied assignments and academic misconduct is zero score

Academic Misconduct

- Using someone else's output
- Borrowing code from someone who took course before or has done the project
- Cheating in exams and assignments

Evaluation Policies

• Exam contents

• Topics of this Class and TA Classes

• Grading Rules

- You must achieve 50% of assignments, 50% of project, 50% of midterm, and 50% of final Exam scores.
- You must also deliver at least 80% of assignments.

Projects (cont'd)

- Project team:
 - 1 student!

Phases

- Topic selection
- Specification
- Modeling
- Block Diagram
- Synthesis
- Implementation
- Documentation
- Presentation

Edmodo

- Course slides
- Important announcements
- Code
 - Digital Logic Design
 - N4dqjv
 - <u>https://edmo.do/j/euftnc</u>

Course Syllabus at A Glance

Digital Logic Design: Intro

Course Syllabus In Detail

 Digital computers and information Introduction 					
	 Concepts 				
 Number system 					
Base 10	Binary 2	Octal 8	Hex 16	BCD	
08	1000	10	8	1000	
15	1111	17	F	0001 0101	

Course Syllabus in Detail (cont'd)

- Design logic
 - Boolean algebra
 - Switching function
 - Basic components

 $(Y = \overline{A})$ $(Y = A \cdot B)$ (Y = A + B)

- Design logic blocks
 - Basic components
 - Combinational blocks
 - Storage components
 - Sequential blocks

Design Tools

- Design and simulation tools
 - Proteus
 - Xilinx ISE tool set
 - Quartus

Thank You

